

    
      
          
            
  
EMHASS: Energy Management for Home Assistant
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Welcome to the documentation of EMHASS. With this package written in Python you will be able to implement a real Energy Management System for your household. This software was designed to be easy configurable and with a fast integration with Home Assistant: https://www.home-assistant.io/

To get started go ahead and look at the installation procedure and usage instructions below.
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EMHASS & EMHASS-Add-on differences

User will pass parameters into EMHASS differently, based on running Standalone mode or addon Mode.

This page tries to help to resolve the common confusion between the two.

Its best to see EMHASS-Add-on as a Home Assistant Docker wrapper for EMHASS. However, because of this containerization, certain changes are made between the two modes.


Configuration & parameter differences

Both EMHASS & EMHASS-Add-on utilize config_emhass.yaml for receiving parameters.

Where they diverge is EMHASS-Add-ons additional use of options.json, generated by Home Assistants Configuration Page.

Any passed parameters given in options.json will overwrite the parameters hidden in the config_emhass.yaml file in EMHASS. (this results in config_emhass.yaml used for parameter default fall back if certain required parameters were missing in options.json)

The parameters naming convention has also been changed in options.json, designed to make it easier for the user to understand.

See bellow for a list of associations between the parameters from config_emhass.yaml and options.json:

You can view the current parameter differences in the Utils.py [https://github.com/davidusb-geek/emhass/blob/master/src/emhass/utils.py] file under the build_params function.



	config

	config_emhass.yaml

	options.json

	options.json list dictionary key





	retrieve_hass_conf

	freq

	optimization_time_step

	



	retrieve_hass_conf

	days_to_retrieve

	historic_days_to_retrieve

	



	retrieve_hass_conf

	var_PV

	sensor_power_photovoltaics

	



	retrieve_hass_conf

	var_load

	sensor_power_load_no_var_loads

	



	retrieve_hass_conf

	load_negative

	load_negative

	



	retrieve_hass_conf

	set_zero_min

	set_zero_min

	



	retrieve_hass_conf

	method_ts_round

	method_ts_round

	



	params_secrets

	solcast_api_key

	optional_solcast_api_key

	



	params_secrets

	solcast_rooftop_id

	optional_solcast_rooftop_id

	



	params_secrets

	solar_forecast_kwp

	optional_solar_forecast_kwp

	



	params_secrets

	time_zone

	time_zone

	



	params_secrets

	lat

	Latitude

	



	params_secrets

	lon

	Longitude

	



	params_secrets

	alt

	Altitude

	



	optim_conf

	set_use_battery

	set_use_battery

	



	optim_conf

	num_def_loads

	number_of_deferrable_loads

	



	optim_conf

	P_deferrable_nom

	list_nominal_power_of_deferrable_loads

	nominal_power_of_deferrable_loads



	optim_conf

	def_total_hours

	list_operating_hours_of_each_deferrable_load

	operating_hours_of_each_deferrable_load



	optim_conf

	treat_def_as_semi_cont

	list_treat_deferrable_load_as_semi_cont

	treat_deferrable_load_as_semi_cont



	optim_conf

	set_def_constant

	list_set_deferrable_load_single_constant

	set_deferrable_load_single_constant



	optim_conf

	weather_forecast_method

	weather_forecast_method

	



	optim_conf

	load_forecast_method

	load_forecast_method

	



	optim_conf

	delta_forecast

	delta_forecast_daily

	



	optim_conf

	load_cost_forecast_method

	load_cost_forecast_method

	



	optim_conf

	load_cost_hp

	load_peak_hours_cost

	



	optim_conf

	load_cost_hc

	load_offpeak_hours_cost

	



	optim_conf

	prod_price_forecast_method

	production_price_forecast_method

	



	optim_conf

	prod_sell_price

	photovoltaic_production_sell_price

	



	optim_conf

	set_total_pv_sell

	set_total_pv_sell

	



	optim_conf

	lp_solver

	lp_solver

	



	optim_conf

	lp_solver_path

	lp_solver_path

	



	optim_conf

	set_nocharge_from_grid

	set_nocharge_from_grid

	



	optim_conf

	set_nodischarge_to_grid

	set_nodischarge_to_grid

	



	optim_conf

	set_battery_dynamic

	set_battery_dynamic

	



	optim_conf

	battery_dynamic_max

	battery_dynamic_max

	



	optim_conf

	battery_dynamic_min

	battery_dynamic_min

	



	optim_conf

	weight_battery_discharge

	weight_battery_discharge

	



	optim_conf

	weight_battery_charge

	weight_battery_charge

	



	optim_conf

	def_start_timestep

	list_start_timesteps_of_each_deferrable_load

	start_timesteps_of_each_deferrable_load



	optim_conf

	def_end_timestep

	list_end_timesteps_of_each_deferrable_load

	end_timesteps_of_each_deferrable_load



	plant_conf

	P_grid_max

	maximum_power_from_grid

	



	plant_conf

	module_model

	list_pv_module_model

	pv_module_model



	plant_conf

	inverter_model

	list_pv_inverter_model

	pv_inverter_model



	plant_conf

	surface_tilt

	list_surface_tilt

	surface_tilt



	plant_conf

	surface_azimuth

	list_surface_azimuth

	surface_azimuth



	plant_conf

	modules_per_string,list_modules_per_string

	modules_per_string

	



	plant_conf

	strings_per_inverter

	list_strings_per_inverter

	strings_per_inverter



	plant_conf

	Pd_max

	battery_discharge_power_max

	



	plant_conf

	Pc_max

	battery_charge_power_max

	



	plant_conf

	eta_disch

	battery_discharge_efficiency

	



	plant_conf

	eta_ch

	battery_charge_efficiency

	



	plant_conf

	Enom

	battery_nominal_energy_capacity

	



	plant_conf

	SOCmin

	battery_minimum_state_of_charge

	



	plant_conf

	SOCmax

	battery_maximum_state_of_charge

	



	plant_conf

	SOCtarget

	battery_target_state_of_charge

	






Descriptions of each parameter, can be found at:


	Configuration file [https://emhass.readthedocs.io/en/latest/config.html] on EMHASS


	en.yaml [https://github.com/davidusb-geek/emhass-add-on/blob/main/emhass/translations/en.yaml] on EMHASS-Add-on






Passing in secret parameters

Secret parameters get passed differently, depending on which mode you choose. Alternative options are also present for passing secrets if running EMHASS separately from Home Assistant. (I.e. not via EMHASS-Add-on)


EMHASS (with standalone mode)

Running EMHASS in standalone mode’s default workflow retrieves all secret parameters via a passed secrets_emhass.yaml file. An example template has been provided under the name secrets_emhass(example).yaml.


Alternative Options

For users who are running EMHASS with methods other than EMHASS-Add-on, secret parameters can be passed with the use of arguments and/or environment variables. (instead of secrets_emhass.yaml)

Some arguments include:  --url and --key

Some environment variables include: TIME_ZONE, LAT , LON, ALT, EMHASS_URL, EMHASS_KEY

Note: As of writing, EMHASS standalone will override ARG/ENV secret parameters if file is present.

For more information on passing arguments and environment variables using docker, have a look at some examples from Configuration and Installation [https://emhass.readthedocs.io/en/latest/intro.html#configuration-and-installation] and EMHASS Development [https://emhass.readthedocs.io/en/latest/develop.html] pages.




EMHASS-Add-on (addon mode)

By default the URL and KEY parameters have been set to empty/blank. This results in EMHASS calling to its Supervisor API to gain access locally. This is the easiest method, as there is no user input necessary.

However, if you wish to receive/send sensor data to a different Home Assistant environment, set url and key values in the hass_url & long_lived_token hidden parameters.


	hass_url example: https://192.168.1.2:8123/


	long_lived_token generated from the Long-lived access tokens section in your user profile settings
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An EMS based on Linear Programming

In this section we present the basics of the Linear Programming (LP) approach for a household Energy Management System (EMS).


Motivation

Imagine that we have installed some solar panels in our house. Imagine that we have Home Assistant and that we can control (on/off) some crucial power consumptions in our home. For example the water heater, the pool pump, a dispatchable dishwasher, and so on. We can also imagine that we have installed a battery like a PowerWall, in order to maximize the PV self-consumption. With Home Assistant we also have sensors that can measure the power produced by our PV plant, the global power consumption of the house and hopefully the power consumed by the controllable loads. Home Assistant has released the Energy Dashboard where we can viusalize all these variables in somme really good looking graphics. See: https://www.home-assistant.io/blog/2021/08/04/home-energy-management/

Now, how can we be certain of the good and optimal management of these devices? If we define a fixed schedule for our deferrable loads, is this the best solution? When we can indicate or force a charge or discharge on the battery? This is a well known academic problem for an Energy Management System.

The first and most basic approach could be to define some basic rules or heuristics, this is the so called rule-based approach. The rules could be some fixed schedules for the deferrable loads, or some threshold based triggering of the battery charge/discharge, and so on. The rule-based approach has the advantage of being simple to implement and robust. However, the main disadvantage is that optimality is not guaranteed.

The goal of this work is to provide an easy to implement framework where anyone using Home Assistant can apply the best and optimal set of instructions to control the energy flow in a household. There are many ways and techniques that can be found in the literature to implement optimized EMS. In this package we are using just one of those techniques, the Linear Programming approach, that will be presented below.

When I was designing and testing this package in my own house I estimated a daily gain between 5% and 8% when using the optimized approach versus a rule-based one. In my house I have a 5 kWp PV installation with a contractual grid supply of 9 kVA. I have a grid contract with two tariffs for power consumption for the grid (peak and non-peak hours) and one tariff for the excess PV energy injected to the grid. I have no battery installed, but I suppose that the margin of gain would be even bigger with a battery, adding flexibility to the energy management. Of course the disadvantage is the initial capital cost of the battery stack. In my case the gain comes from the fact that the EMS is helping me to decide when to turn on my water heater and the pool pump. If we have a good clear sky day the results of the optimization will normally be to turn them on during the day where solar production is present. But if the day is going to be really clouded, then is possible that the best solution will be to turn them on during the non-peak tariff hours, for my case this is during the night from 9pm to 2am. All these decisions are made automatically by the EMS using forecasts of both the PV production and the house power consumption.

Some other good packages and projects offer similar approaches to EMHASS. I can cite for example the good work done by my friends at the G2ELab in Grenoble, France. They have implemented the OMEGAlpes package that can also be used as an optimized EMS using LP and MILP (see: https://gricad-gitlab.univ-grenoble-alpes.fr/omegalpes/omegalpes). But here in EMHASS the first goal was to keep it simple to implement using configuration files and the second goal was that it should be easy to integrate to Home Assistant. I am sure that there will be a lot of room for optimize the code and the package implementation as this solution will be used and tested in the future.

I have included a list of scientific references at the bottom if you want to deep into the technical aspects of this subject.

Ok, let’s start by a resumed presentation of the LP approach.



Linear programming

Linear programming is an optimization method that can be used to obtain the best solution from a given cost function using a linear modeling of a problem. Typically we can also also add linear constraints to the optimization problem.

This can be mathematically written as:


\[\begin{split}
  & \underset{x}{\text{Maximize  }} && \mathbf{c}^\mathrm{T} \mathbf{x}\\
  & \text{subject to  } && A \mathbf{x} \leq \mathbf{b} \\
  & \text{and  } && \mathbf{x} \ge \mathbf{0}
\end{split}\]

with \(\mathbf{x}\)  the variable vector that we want to find, \(\mathbf{c}\) and \(\mathbf{b}\) are vectors with known coefficients and \(\mathbf{A}\) is a matrix with known values. Here the cost function is defined by \(\mathbf{c}^\mathrm{T} \mathbf{x}\). The inequalities \(A \mathbf{x} \leq \mathbf{b}\) and \(\mathbf{x} \ge \mathbf{0}\) represent the convex region of feasible solutions.

We could find a mix of real and integer variables in \(\mathbf{x}\), in this case the problem is referred as Mixed Integer Linear Programming (MILP). Typically this kind of problem use the branch and boud type of solvers or similars.

The LP has of course its set of advantages and disadvantages. The main advantage is the that if the problem is well posed and the region of feasible possible solutions is convex, then a solution is guaranteed and solving times are usually fast when compared to other optimization techniques (as dynamic programming for example). However we can easily fall into memory issues, larger solving times and convergence problems if the size of the problem is too high (too many equations).



Household EMS with LP

The LP problem for the household EMS is solved in EMHASS using different user-chosen cost functions.

Three main cost functions are proposed.


Cost functions


1/ The profit cost function:

In this case the cost function is posed to maximize the profit. The profit is defined by the revenues from selling PV power to the grid minus the cost of consumed energy from the grid.
This can be represented with the following objective function:


\[
\sum_{i=1}^{\Delta_{opt}/\Delta_t} -0.001*\Delta_t*(unit_{LoadCost}[i]*P_{gridPos}[i] + prod_{SellPrice}*P_{gridNeg}[i])
\]


For the special case of an energy contract where the totality of the PV produced energy is injected into the grid this will be:


\[
> \sum_{i=1}^{\Delta_{opt}/\Delta_t} -0.001*\Delta_t*(unit_{LoadCost}[i]*(P_{load}[i]+P_{defSum}[i]) + prod_{SellPrice}*P_{gridNeg}[i])
> \]




where \(\Delta_{opt}\) is the total period of optimization in hours, \(\Delta_t\) is the optimization time step in hours, \(unit_{LoadCost_i}\) is the cost of the energy from the utility in EUR/kWh, \(P_{load}\) is the electricity load consumption (positive defined), \(P_{defSum}\) is the sum of the deferrable loads defined, \(prod_{SellPrice}\) is the price of the energy sold to the utility, \(P_{gridNeg}\) is the negative component of the grid power, this is the power exported to the grid. All these power are expressed in Watts.



2/ The energy from the grid cost:

In this case the cost function is computed as the cost of the energy coming from the grid. The PV power injected into the grid is not valorized.
This is:


\[
\sum_{i=1}^{\Delta_{opt}/\Delta_t} -0.001*\Delta_t*unit_{LoadCost}[i]*P_{gridPos}[i]
\]


Again, for the special case of an energy contract where the totality of the PV produced energy is injected into the grid this will be:


\[
> \sum_{i=1}^{\Delta_{opt}/\Delta_t} -0.001*\Delta_t* unit_{LoadCost}[i]*(P_{load}[i]+P_{defSum}[i])
> \]






3/ The self-consumption cost function:

This is a cost function designed to maximize the self-consumption of the PV plant.


Note

EMHASS has two methods for defining a self-consumption cost function: bigm and maxmin. In the current version, only the bigm method is used, as the maxmin method has convergence issues.




bigM self-consumption method

In this case, the cost function is based on the profit cost function, but the energy offtake cost is weighted more heavily than the energy injection revenue.
This can be represented with the following objective function:


\[
\sum_{i=1}^{\Delta_{opt}/\Delta_t} -0.001*\Delta_t*(bigM*unit_{LoadCost}[i]*P_{gridPos}[i] + prod_{SellPrice}*P_{gridNeg}[i])
\]

where bigM equals 1000.
Adding this bigM factor will give more weight to the cost of grid offtake, or formulated differently: avoiding offtake through self-consumption will have strong influence on the calculated cost.

Please note that the bigM factor is not used in the calculated cost that comes out of the optimizer results. It is only used to drive the optimizer.


Maxmin self-consumption method (currently disabled)

The cost function is computed as the revenues from selling PV power to the grid, plus the avoided cost of consuming PV power locally (the latter means: valorizing the self-consumed cost at the grid offtake price).

The self-consumption is defined as:


\[
> SC = \min(P_{PV}, (P_{load}+P_{defSum}))
> \]

To convert this to a linear cost function, an additional continuous variable \(SC\) is added. This is the so-called maximin problem.
The cost function is defined as:


\[
> \sum_{i=1}^{\Delta_{opt}/\Delta_t} SC[i]
> \]

With the following set of constraints:


\[
> SC[i] \leq P_{PV}[i]
> \]

and


\[
> SC[i] \leq P_{load}[i]+P_{defSum}[i]
> \]




All these cost functions can be chosen by the user with the --costfun tag with the emhass command. The options are: profit, cost, self-consumption.
They are all set in the LP formulation as cost function to maximize.

The problem constraints are written as follows.





The main constraint: power balance


\[
P_{PV_i}-P_{defSum_i}-P_{load_i}+P_{gridNeg_i}+P_{gridPos_i}+P_{stoPos_i}+P_{stoNeg_i}=0
\]

with \(P_{PV}\) the PV power production, \(P_{gridPos}\) the positive component of the grid power (from grid to household), \(P_{stoPos}\) and \(P_{stoNeg}\) are the positive (discharge) and negative components of the battery power (charge).

Normally the PV power production and the electricity load consumption are considered known. In the case of a day-ahead optimization these should be forecasted values. When the optimization problem is solved the others power defining the power flow are found as a result: the deferrable load power, the grid power and the battery power.



Other constraints

Some other special linear constraints are defined. A constraint is introduced to avoid injecting and consuming from grid at the same time, which is physically impossible. Other constraints are used to control the total time that a deferrable load will stay on and the number of start-ups.

Constraints are also used to define semi-continuous variables. Semi-continuous variables are variables that must take a value between their minimum and maximum or zero.

A final set of constraints is used to define the behavior of the battery. Notably:


	Ensure that maximum charge and discharge powers are not exceeded.


	Minimum and maximum state of charge values are not exceeded.


	Force the final state of charge value to be equal to the initial state of charge.




The minimum and maximum state of charge limitations can be expressed as follows:


\[
\sum_{i=1}^{k} \frac{P_{stoPos_i}}{\eta_{dis}} + \eta_{ch}P_{stoNeg_i} \leq \frac{E_{nom}}{\Delta_t}(SOC_{init}-SOC_{min})
\]

and


\[
-(\sum_{i=1}^{k} \frac{P_{stoPos_i}}{\eta_{dis}} + \eta_{ch}P_{stoNeg_i}) \leq \frac{E_{nom}}{\Delta_t}(SOC_{max}-SOC_{init})
\]

where \(E_{nom}\) is the battery capacity in kWh, \(\eta_{dis/ch}\) are the discharge and charge efficiencies and \(SOC\) is the state of charge.

Forcing the final state of charge value to be equal to the initial state of charge can be expressed as follows:


\[
\sum_{i=1}^{k} \frac{P_{stoPos_i}}{\eta_{dis}} + \eta_{ch}P_{stoNeg_i} = \frac{E_{nom}}{\Delta_t}(SOC_{init}-SOC_{final})
\]




The EMHASS optimizations

There are 3 different optimization types that are implemented in EMHASS.


	A perfect forecast optimization.


	A day-ahead optimization.


	A Model Predictive Control optimization.




The following example diagram may help us understand the time frames of these optimizations:

[image: ]


Perfect forecast optimization

This is the first type of optimization task that are proposed with this package. In this case the main inputs, the PV power production and the house power consumption, are fixed using historical values from the past. This mean that in some way we are optimizing a system with a perfect knowledge of the future. This optimization is of course non-practical in real life. However this can be give us the best possible solution of the optimization problem that can be later used as a reference for comparison purposes. On the example diagram presented before, the perfect optimization is defined on a 5-day period. These historical values will be retrieved from the Home Assistant database.



Day-ahead optimization

In this second type of optimization task the PV power production and the house power consumption are forecasted values. This is the action that should be performed in a real case scenario and is the case that should be launched from Home Assistant to obtain an optimized energy management of future actions. This optimization is defined in the time frame of the next 24 hours.

As the optimization is bounded to forecasted values, it will also be bounded to uncertainty. The quality and accuracy of the optimization results will be inevitably linked to the quality of the forecast used for these values. The better the forecast error, the better accuracy of the optimization result.



Model Predictive Control (MPC) optimization

This is an informal/naive representation of a MPC controller.

This type of controller performs the following actions:


	Set the prediction horizon and receding horizon parameters.


	Perform an optimization on the prediction horizon.


	Apply the first element of the obtained optimized control variables.


	Repeat at a relatively high frequency, ex: 5 min.




On the example diagram presented before, the MPC is performed on 6h intervals at 6h, 12h and 18h. The prediction horizon is progressively reducing during the day to keep the one-day energy optimization notion (it should not just be a fixed rolling window as, for example, you would like to know when you want to reach the desired soc_final). This type of optimization is used to take advantage of actualized forecast values during throughout the day. The user can of course choose higher/lower implementation intervals, keeping in mind the contraints below on the prediction_horizon.

When applying this controller, the following runtimeparams should be defined:


	prediction_horizon for the MPC prediction horizon. Fix this at at least 5 times the optimization time step.


	soc_init for the initial value of the battery SOC for the current iteration of the MPC.


	soc_final for the final value of the battery SOC for the current iteration of the MPC.


	def_total_hours for the list of deferrable loads functioning hours. These values can decrease as the day advances to take into account receding horizon daily energy objectives for each deferrable load.


	def_start_timestep for the timestep as from which each deferrable load is allowed to operate (if you don’t want the deferrable load to use the whole optimization timewindow). If you specify a value of 0 (or negative), the deferrable load will be optimized as from the beginning of the complete prediction horizon window.


	def_end_timestep for the timestep before which each deferrable load should operate (if you don’t want the deferrable load to use the whole optimization timewindow). If you specify a value of 0 (or negative), the deferrable load will be optimized over the complete prediction horizon window.




In a practical use case, the values for soc_init and soc_final for each MPC optimization can be taken from the initial day-ahead optimization performed at the beginning of each day.



Time windows for deferrable loads

Since v0.7.0, the user has the possibility to limit the operation of each deferrable load to a specific timewindow, which can be smaller than the prediction horizon. This is done by means of the def_start_timestep and def_end_timestep parameters. These parameters can either be set in the configuration screen of the Home Assistant EMHASS add-on, in the config_emhass.yaml file, or provided as runtime parameters.

Taking the example of two electric vehicle that need to charge, but which are not available during the whole prediction horizon:
[image: image]

For this example, the settings could look like this:
Either in the Home Assistant add-on config screen:
[image: image]

Either as runtime parameter:

curl -i -H 'Content-Type:application/json' -X POST -d '{"prediction_horizon":30, "def_total_hours":[4,2],"def_start_timestep":[4,0],"def_end_timestep":[27,23]}' http://localhost:5000/action/naive-mpc-optim





Please note that the proposed deferrable load time windows will be submitted to a validation step & can be automatically corrected.
Possible cases are depicted below:
[image: image]
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The forecast module

EMHASS will basically need 4 forecasts to work properly:


	PV power production forecast (internally based on the weather forecast and the characteristics of your PV plant). This is given in Watts.


	Load power forecast: how much power your house will demand on the next 24h. This is given in Watts.


	Load cost forecast: the price of the energy from the grid on the next 24h. This is given in EUR/kWh.


	PV production selling price forecast: at what price are you selling your excess PV production on the next 24h. This is given in EUR/kWh.




There are methods that are generalized to the 4 forecast needed. For all there forecasts it is possible to pass the data either as a passed list of values or by reading from a CSV file. With these methods it is then possible to use data from external forecast providers.

Then there are the methods that are specific to each type of forecast and that proposed forecast treated and generated internally by this EMHASS forecast class. For the weather forecast a first method (scrapper) uses a scrapping to the ClearOutside webpage which proposes detailed forecasts based on Lat/Lon locations. This method seems stable but as with any scrape method it will fail if any changes are made to the webpage API. Another method (solcast) is using the SolCast PV production forecast service. A final method (solar.forecast) is using another external service: Solar.Forecast, for which just the nominal PV peak installed power should be provided. Search the forecast section on the documentation for examples on how to implement these different methods.

The get_power_from_weather method is proposed here to convert from irradiance data to electrical power. The PVLib module is used to model the PV plant.

The specific methods for the load forecast are a first method (naive) that uses a naive approach, also called persistance. It simply assumes that the forecast for
a future period will be equal to the observed values in a past period. The past period is controlled using parameter delta_forecast. A second method (mlforecaster)
uses an internal custom forecasting model using machine learning. There is a section in the documentation explaining how to use this method.


Note

This custom machine learning model is introduced from v0.4.0. EMHASS proposed this new mlforecaster class with fit, predict and tune methods. Only the predict method is used here to generate new forecasts, but it is necessary to previously fit a forecaster model and it is a good idea to optimize the model hyperparameters using the tune method. See the dedicated section in the documentation for more help.



For the PV production selling price and Load cost forecasts the privileged method is a direct read from a user provided list of values. The list should be passed as a runtime parameter during the curl to the EMHASS API.


PV power production forecast

The default method for PV power forecast is the scrapping of weather forecast data from the https://clearoutside.com/ website. This is obtained using method=scrapper. This site proposes detailed forecasts based on Lat/Lon locations. This method seems quite stable but as with any scrape method it will fail if any changes are made to the webpage API. The weather forecast data is then converted into PV power production using the list_pv_module_model and list_pv_inverter_model paramters defined in the configuration.

A second method uses the SolCast solar forecast service. Go to https://solcast.com/ and configure your system. You will need to set method=solcast and basically use two parameters solcast_rooftop_id and solcast_api_key that should be passed as parameters at runtime. This will be limited to 10 API requests per day, the granularity will be 30 min and the forecast is updated every 6h. If needed, better performances may be obtained with paid plans: https://solcast.com/pricing/live-and-forecast.

For example:

curl -i -H "Content-Type:application/json" -X POST -d '{"solcast_rooftop_id":"<your_system_id>","solcast_api_key":"<your_secret_api_key>"}' http://localhost:5000/action/dayahead-optim





A third method uses the Solar.Forecast service. You will need to set method=solar.forecast and use just one parameter solar_forecast_kwp (the PV peak installed power in kW) that should be passed at runtime. This will be using the free public Solar.Forecast account with 12 API requests per day and 1h data resolution. As with SolCast, there are paid account services that may results in better forecasts.

For example, for a 5 kWp installation:

curl -i -H "Content-Type:application/json" -X POST -d '{"solar_forecast_kwp":5}' http://localhost:5000/action/dayahead-optim






Note

If you use the Solar.Forecast or Solcast methods, or explicitly pass the PV power forecast values (see below), the list_pv_module_model and list_pv_inverter_model paramters defined in the configuration will be ignored.





Load power forecast

The default method for load forecast is a naive method, also called persistence. This is obtained using method=naive. This method simply assumes that the forecast for a future period will be equal to the observed values in a past period. The past period is controlled using parameter delta_forecast and the default value for this is 24h.

This is presented graphically here:
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Note

New in EMHASS v0.4.0: machine learning forecast models!



Starting with v0.4.0, a new forecast framework is proposed within EMHASS. It provides a more efficient way to forecast the power load consumption. It is based on the skforecast module that uses scikit-learn regression models considering auto-regression lags as features. The hyperparameter optimization is proposed using bayesian optimization from the optuna module. To use this change to method=mlforecaster in the configuration.

The API provides fit, predict and tune methods.

The following is an example of a trained model using a KNN regressor:

[image: ]

The naive persistance model performs very well on the 2 day test period, however is well out-performed by the KNN regressor when back-testing on the complete training set (10 months of 30 minute time step data).

The hyperparameter tuning using bayesian optimization improves the bare KNN regressor from \(R^2=0.59\) to \(R^2=0.75\). The optimized number of lags is \(48\).

See the machine learning forecaster section for more details.



Load cost forecast

The default method for load cost forecast is defined for a peak and non-peak hours contract type. This is obtained using method=hp_hc_periods.

When using this method you can provide a list of peak-hour periods, so you can add as many peak-hour periods as possible.

As an example for a two peak-hour periods contract you will need to define the following list in the configuration file:

- list_hp_periods:
    - period_hp_1:
        - start: '02:54'
        - end: '15:24'
    - period_hp_2:
        - start: '17:24'
        - end: '20:24'
- load_cost_hp: 0.1907
- load_cost_hc: 0.1419





This example is presented graphically here:
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PV production selling price forecast

The default method for this forecast is simply a constant value. This can be obtained using method=constant.

Then you will need to define the prod_sell_price variable to provide the correct price for energy injected to the grid from excedent PV production in €/kWh.



Passing your own forecast data

For all the needed forecasts in EMHASS two other methods allows the user to provide their own forecast value. This may be used to provide a forecast provided by a more powerful and accurate forecaster. The two methods are: csv and list.

For the csv method you should push a csv file to the data folder. The CSV file should contain no header and the timestamped data should have the following format:

2021-04-29 00:00:00+00:00,287.07
2021-04-29 00:30:00+00:00,274.27
2021-04-29 01:00:00+00:00,243.38
...





For the list method you just have to add the data as a list of values to a data dictionnary during the call to emhass using the runtimeparams option.

The possible dictionnary keys to pass data are:


	pv_power_forecast for the PV power production forecast.


	load_power_forecast for the Load power forecast.


	load_cost_forecast for the Load cost forecast.


	prod_price_forecast for the PV production selling price forecast.




For example if using the add-on or the standalone docker installation you can pass this data as list of values to the data dictionnary during the curl POST:

curl -i -H "Content-Type: application/json" -X POST -d '{"pv_power_forecast":[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 70, 141.22, 246.18, 513.5, 753.27, 1049.89, 1797.93, 1697.3, 3078.93, 1164.33, 1046.68, 1559.1, 2091.26, 1556.76, 1166.73, 1516.63, 1391.13, 1720.13, 820.75, 804.41, 251.63, 79.25, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]}' http://localhost:5000/action/dayahead-optim





You need to be careful here to send the correct amount of data on this list, the correct length. For example, if the data time step is defined to 1h and you are performing a day-ahead optimization, then this list length should be of 24 data points.


Example using: SolCast forecast + Amber prices

If you’re using SolCast then you can define the following sensors in your system:

sensors:

  - platform: rest
    name: "Solcast Forecast Data"
    json_attributes:
      - forecasts
    resource: https://api.solcast.com.au/rooftop_sites/yyyy/forecasts?format=json&api_key=xxx&hours=24
    method: GET
    value_template: "{{ (value_json.forecasts[0].pv_estimate)|round(2) }}"
    unit_of_measurement: "kW"
    device_class: power
    scan_interval: 8000
    force_update: true

  - platform: template
    sensors:
      solcast_24hrs_forecast :
        value_template: >-
          {%- set power = state_attr('sensor.solcast_forecast_data', 'forecasts') | map(attribute='pv_estimate') | list %}
          {%- set values_all = namespace(all=[]) %}
          {% for i in range(power | length) %}
           {%- set v = (power[i] | float |multiply(1000) ) | int(0) %}
            {%- set values_all.all = values_all.all + [ v ] %}
          {%- endfor %} {{ (values_all.all)[:48] }}





With this you can now feed this SolCast forecast to EMHASS along with the mapping of the Amber prices.

A MPC call may look like this for 4 deferrable loads:

    post_mpc_optim_solcast: "curl -i -H \"Content-Type: application/json\" -X POST -d '{\"load_cost_forecast\":{{(
          ([states('sensor.amber_general_price')|float(0)] +
          state_attr('sensor.amber_general_forecast', 'forecasts') |map(attribute='per_kwh')|list)[:48])
          }}, \"prod_price_forecast\":{{(
          ([states('sensor.amber_feed_in_price')|float(0)] +
          state_attr('sensor.amber_feed_in_forecast', 'forecasts')|map(attribute='per_kwh')|list)[:48]) 
          }}, \"pv_power_forecast\":{{states('sensor.solcast_24hrs_forecast')
          }}, \"prediction_horizon\":48,\"soc_init\":{{(states('sensor.powerwall_charge')|float(0))/100
          }},\"soc_final\":0.05,\"def_total_hours\":[2,0,0,0]}' http://localhost:5000/action/naive-mpc-optim"





Thanks to @purcell_labs [https://github.com/purcell-lab] for this example configuration.



Example combining multiple SolCast configurations

If you have multiple rooftops, for example for east-west facing solar panels, then you will need to fuze the sensors providing the different forecasts on a single one using templates in Home Assistant. Then feed that single sensor data passing the data as a list when calling the shell command.

Here is a sample configuration to achieve this, thanks to @gieljnssns [https://github.com/gieljnssns] for sharing.

The two sensors using rest sensors:

- platform: rest
  name: "Solcast Forecast huis"
  json_attributes:
    - forecasts
  resource: https://api.solcast.com.au/rooftop_sites/xxxxxxxxxxc/forecasts?format=json&api_key=xxxxxxxxx&hours=24
  method: GET
  value_template: "{{ (value_json.forecasts[0].pv_estimate)|round(2) }}"
  unit_of_measurement: "kW"
  device_class: power
  scan_interval: 86400
  force_update: true

- platform: rest
  name: "Solcast Forecast garage"
  json_attributes:
    - forecasts
  resource: https://api.solcast.com.au/rooftop_sites/xxxxxxxxxxc/forecasts?format=json&api_key=xxxxxxxxx&hours=24
  method: GET
  value_template: "{{ (value_json.forecasts[0].pv_estimate)|round(2) }}"
  unit_of_measurement: "kW"
  device_class: power
  scan_interval: 86400
  force_update: true





Then two templates, one for each sensor:

    solcast_24hrs_forecast_garage:
      value_template: >-
        {%- set power = state_attr('sensor.solcast_forecast_garage', 'forecasts') | map(attribute='pv_estimate') | list %}
        {%- set values_all = namespace(all=[]) %}
        {% for i in range(power | length) %}
          {%- set v = (power[i] | float |multiply(1000) ) | int(0) %}
          {%- set values_all.all = values_all.all + [ v ] %}
        {%- endfor %} {{ (values_all.all)[:48] }}

    solcast_24hrs_forecast_huis:
      value_template: >-
        {%- set power = state_attr('sensor.solcast_forecast_huis', 'forecasts') | map(attribute='pv_estimate') | list %}
        {%- set values_all = namespace(all=[]) %}
        {% for i in range(power | length) %}
          {%- set v = (power[i] | float |multiply(1000) ) | int(0) %}
          {%- set values_all.all = values_all.all + [ v ] %}
        {%- endfor %} {{ (values_all.all)[:48] }}





And the fusion of the two sensors:

    solcast_24hrs_forecast:
      value_template: >-
        {% set a = states("sensor.solcast_24hrs_forecast_garage")[1:-1].split(',') | map('int') | list %}
        {% set b = states("sensor.solcast_24hrs_forecast_huis")[1:-1].split(',') | map('int') | list %}
        {% set ns = namespace(items = []) %}
        {% for i in range(a | length) %}
          {% set ns.items = ns.items + [ a[i]  + b[i]  ] %}
        {% endfor %}
        {{ ns.items }}





And finally the shell command:

dayahead_optim: "curl -i -H \"Content-Type:application/json\" -X POST -d '{\"pv_power_forecast\":{{states('sensor.solcast_24hrs_forecast')}}}' http://localhost:5001/action/dayahead-optim"







Example using the Nordpool integration

The Nordpool integration provides spot market electricity prices (consumption and production) for the Nordic, Baltic and part of Western Europe.
An integration for Home Assistant can be found here: https://github.com/custom-components/nordpool

After setup the sensors should appear in Home Assistant for raw today and tomorrow values.

The subsequent shell command to concatenate today and tomorrow values can be for example:

shell_command:
  trigger_nordpool_forecast: "curl -i -H \"Content-Type: application/json\" -X POST -d '{\"load_cost_forecast\":{{((state_attr('sensor.nordpool', 'raw_today') | map(attribute='value') | list  + state_attr('sensor.nordpool', 'raw_tomorrow') | map(attribute='value') | list))[now().hour:][:24] }},\"prod_price_forecast\":{{((state_attr('sensor.nordpool', 'raw_today') | map(attribute='value') | list  + state_attr('sensor.nordpool', 'raw_tomorrow') | map(attribute='value') | list))[now().hour:][:24]}}}' http://localhost:5000/action/dayahead-optim"








Now/current values in forecasts

When implementing MPC applications with high optimization frequencies it can be interesting if at each MPC iteration the forecast values are updated with the real now/current values measured from live data. This is useful to improve the accuracy of the short-term forecasts. As shown in some of the references below, mixing with a persistance model make sense since this type of model performs very good at low temporal resolutions (intra-hour).

A simple integration of current/now values for PV and load forecast is implemented using a mixed one-observation presistence model and the one-step-ahead forecasted values from the current passed method.

This can be represented by the following equation at time \(t=k\):


\[
P^{mix}_{PV} = \alpha \hat{P}_{PV}(k) + \beta P_{PV}(k-1)
\]

Where \(P^{mix}_{PV}\) is the mixed power forecast for PV prodduction, \(\hat{P}_{PV}(k)\) is the current first element of the original forecast data, \(P_{PV}(k-1)\) is the now/current value of PV production and \(\alpha\) and \(\beta\) are coefficients that can be fixed to reflect desired dominance of now/current values over the original forecast data or viceversa.

The alpha and beta values can be passed in the dictionnary using the runtimeparams option during the call to emhass. If not passed they will both take the default 0.5 value. These values should be fixed following your own analysis on how much weight you want to put on measured values to be used as the persistance forecast. This will also depend on your fixed optimization time step. As a default they will be at 0.5, but if you want to give more weight to measured persistance values, then you can try lower \(\alpha\) and rising \(\beta\), for example: alpha=0.25, beta=0.75. After this you will need to check with the recored history if these values fits your needs.
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The machine learning forecaster

Starting with v0.4.0, a new forecast framework is proposed within EMHASS. It provides a more efficient way to forecast the power load consumption. It is based on the skforecast module that uses scikit-learn regression models considering auto-regression lags as features. The hyperparameter optimization is proposed using bayesian optimization from the optuna module.

This API provides three main methods:


	fit: to train a model with the passed data. This method is exposed with the forecast-model-fit end point.


	predict: to obtain a forecast from a pre-trained model. This method is exposed with the forecast-model-predict end point.


	tune: to optimize the models hyperparameters using bayesian optimization. This method is exposed with the forecast-model-tune end point.





A basic model fit

To train a model use the forecast-model-fit end point.

Some paramters can be optionally defined at runtime:


	days_to_retrieve: the total days to retrieve from Home Assistant for model training. Define this in order to retrieve as much history data as possible.





Note

The minimum number of days_to_retrieve is hard coded to 9 by default. But it is adviced to provide more data for better accuracy by modifying your Home Assistant recorder settings.




	model_type: define the type of model forecast that this will be used for. For example: load_forecast. This should be an unique name if you are using multiple custom forecast models.


	var_model: the name of the sensor to retrieve data from Home Assistant. Example: sensor.power_load_no_var_loads.


	sklearn_model: the scikit-learn model that will be used. For now only this options are possible: LinearRegression, ElasticNet and KNeighborsRegressor.


	num_lags: the number of auto-regression lags to consider. A good starting point is to fix this as one day. For example if your time step is 30 minutes, then fix this to 48, if the time step is 1 hour the fix this to 24 and so on.


	split_date_delta: the delta from now to split_date_delta that will be used as the test period to evaluate the model.


	perform_backtest: if True then a back testing routine is performed to evaluate the performance of the model on the complete train set.




The default values for these parameters are:

runtimeparams = {
    "days_to_retrieve": 9,
    "model_type": "load_forecast",
    "var_model": "sensor.power_load_no_var_loads",
    "sklearn_model": "KNeighborsRegressor",
    "num_lags": 48,
    "split_date_delta": '48h',
    "perform_backtest": False
}





A correct curl call to launch a model fit can look like this:

curl -i -H "Content-Type:application/json" -X POST -d '{}' http://localhost:5000/action/forecast-model-fit





As an example, the following figure shows a 240 days load power data retrieved from EMHASS and that will be used for a model fit:

[image: ]

After applying the curl command to fit the model the following information is logged by EMHASS:

2023-02-20 22:05:22,658 - __main__ - INFO - Training a KNN regressor
2023-02-20 22:05:23,882 - __main__ - INFO - Elapsed time: 1.2236599922180176
2023-02-20 22:05:24,612 - __main__ - INFO - Prediction R2 score: 0.2654560762747957





As we can see the \(R^2\) score for the fitted model on the 2 day test perdiod is \(0.27\).
A quick prediction graph using the fitted model should be available in the webui:

[image: ]

Visually the prediction looks quite acceptable but we need to evaluate this further. For this we can use the "perform_backtest": True option to perform a backtest evaluation using this syntax:

curl -i -H "Content-Type:application/json" -X POST -d '{"perform_backtest": "True"}' http://localhost:5000/action/forecast-model-fit





The results of the backtest will be shown in the logs:

2023-02-20 22:05:36,825 - __main__ - INFO - Simple backtesting
2023-02-20 22:06:32,162 - __main__ - INFO - Backtest R2 score: 0.5851552394233677





So the mean backtest metric of our model is \(R^2=0.59\).

Here is the graphic result of the backtesting routine:
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The predict method

To obtain a prediction using a previously trained model use the forecast-model-predict end point.

curl -i -H "Content-Type:application/json" -X POST -d '{}' http://localhost:5000/action/forecast-model-predict





If needed pass the correct model_type like this:

curl -i -H "Content-Type:application/json" -X POST -d '{"model_type": "load_forecast"}' http://localhost:5000/action/forecast-model-predict





The resulting forecast DataFrame is shown in the webui.

It is possible to publish the predict method results to a Home Assistant sensor. By default this is desactivated but it can be activated by using runtime parameters.

The list of parameters needed to set the data publish task is:


	model_predict_publish: set to True to activate the publish action when calling the forecast-model-predict end point.


	model_predict_entity_id: the unique entity_id to be used.


	model_predict_unit_of_measurement: the unit_of_measurement to be used.


	model_predict_friendly_name: the friendly_name to be used.




The default values for these parameters are:

runtimeparams = {
    "model_predict_publish": False,
    "model_predict_entity_id": "sensor.p_load_forecast_custom_model",
    "model_predict_unit_of_measurement": "W",
    "model_predict_friendly_name": "Load Power Forecast custom ML model"
}







The tuning method with Bayesian hyperparameter optimization

With a previously fitted model you can use the forecast-model-tune end point to tune its hyperparameters. This will be using bayeasian optimization with a wrapper of optuna in the skforecast module.

You can pass the same parameter you defined during the fit step, but var_model has to be defined at least. According to the example, the syntax will be:

curl -i -H "Content-Type:application/json" -X POST -d '{"var_model": "sensor.power_load_no_var_loads"}' http://localhost:5000/action/forecast-model-tune





This will launch the optimization routine and optimize the internal hyperparamters of the scikit-learn regressor and it will find the optimal number of lags.
The following are the logs with the results obtained after the optimization for a KNN regressor:

2023-02-20 22:06:43,112 - __main__ - INFO - Backtesting and bayesian hyperparameter optimization
2023-02-20 22:25:29,987 - __main__ - INFO - Elapsed time: 1126.868682384491
2023-02-20 22:25:50,264 - __main__ - INFO - ### Train/Test R2 score comparison ###
2023-02-20 22:25:50,282 - __main__ - INFO - R2 score for naive prediction in train period (backtest): 0.22525145245617462
2023-02-20 22:25:50,284 - __main__ - INFO - R2 score for optimized prediction in train period: 0.7485208725102304
2023-02-20 22:25:50,312 - __main__ - INFO - R2 score for non-optimized prediction in test period: 0.7098996657492629
2023-02-20 22:25:50,337 - __main__ - INFO - R2 score for naive persistance forecast in test period: 0.8714987509894714
2023-02-20 22:25:50,352 - __main__ - INFO - R2 score for optimized prediction in test period: 0.7572325833767719





This is a graph comparing these results:
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The naive persistance load forecast model performs very well on the 2 day test period with a \(R^2=0.87\), however is well out-performed by the KNN regressor when back-testing on the complete training set (10 months of 30 minute time step data) with a score \(R^2=0.23\).

The hyperparameter tuning using bayesian optimization improves the bare KNN regressor from \(R^2=0.59\) to \(R^2=0.75\). The optimized number of lags is \(48\).


Warning

The tuning routine can be computing intense. If you have problems with computation times, try to reduce the days_to_retrieve parameter. In the example shown, for a 240 days train period, the optimization routine took almost 20 min to finish on an amd64 Linux architecture machine with a i5 processor and 8 Gb of RAM. This is a task that should be performed once in a while, for example every week.





How does this works?

This machine learning forecast class is based on the skforecast module.
We use the recursive autoregresive forecaster with added features.

I will borrow this image from the skforecast documentation [https://joaquinamatrodrigo.github.io/skforecast/0.6.0/user_guides/autoregresive-forecaster.html] that help us understand the working principles of this type of model.

[image: ]

With this type of model what we do in EMHASS is to create new features based on the timestamps of the data retrieved from Home Assistant. We create new features based on the day, the hour of the day, the day of the week, the month of the year, among others.

What is interesting is that these added features are based on the timestamps, they always known in advance and useful for generating forecasts. These are the so-called future known covariates.

In the future we may test to expand using other possible known future covariates from Home Assistant, for example a known (forecasted) temperature, a scheduled presence sensor, etc.



Going further?

This class can be gebneralized to actually forecasting any given sensor variable present in Home Assistant. It has been tested and the main initial motivation for this development was for a better load power consumption forecasting. But in reality is has been coded in a flexible way so that you can control what variable is used, how many lags, the amount of data used to train the model, etc.

So you can really go further and try to forecast other types of variables and possible use the results for some interesting automations in Home Assistant. If doing this, was is important is to evaluate the pertinence of the obtained forecasts. The hope is that the tools proposed here can be used for that purpose.
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Example configurations

In this section example configurations are presented as study cases using real data.


First test system: a simple system with no PV and two deferrable loads

In this example we will consider a simple system with no PV installation and just two deferrable loads that we want to optimize their schedule.

For this the following parameters can be added to the secrets.yaml file: solar_forecast_kwp: 0. And also we will set the PV forecast method to method='solar.forecast'. This is a simple way to just set a vector with zero values on the PV forecast power, emulating the case where there is no PV installation. The other values on the configuration file are set to their default values.


Day-ahead optimization

Let’s performa a day-ahead optimization task on this simple system. We want to schedule our two deferrable loads.

For this we use the following command (example using the legacy EMHASS Python module command line):

emhass --action 'dayahead-optim' --config '/home/user/emhass/config_emhass.yaml' --costfun 'profit'





The retrieved input forecasted powers are shown below:
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Finally, the optimization results are:
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For this system the total value of the obtained cost function is -5.38 EUR.




A second test system: a 5kW PV installation and two deferrable loads

Let’s add a 5 kWp solar production with two deferrable loads. No battery is considered for now. The configuration used is the default configuration proposed with EMHASS.

We will first consider a perfect optimization task, to obtain the optimization results with perfectly know PV production and load power values for the last week.


Perfect optimization

Let’s perform a 7-day historical data optimization.

For this we use the following command (example using the legacy EMHASS Python module command line):

emhass --action 'perfect-optim' --config '/home/user/emhass/config_emhass.yaml' --costfun 'profit'





The retrieved input powers are shown below:
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The input load cost and PV production selling prices are presented in the following figure:
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Finally, the optimization results are:
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For this 7-day period, the total value of the cost function was -26.23 EUR.



Day-ahead optimization

As with the simple system we will now perform a day-ahead optimization task. We use again the dayahead-optim action or end point.

The optimization results are:
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For this system the total value of the obtained cost function is -1.56 EUR. We can note the important improvement on the cost function value whenn adding a PV installation.




A third test system: a 5kW PV installation, a 5kWh battery and two deferrable loads

Now we will consider a complet system with PV and added batteries. To add the battery we will set set_use_battery: true in the optim_conf section of the config_emhass.yaml file.

In this case we want to schedule our deferrable loads but also the battery charge/discharge. We use again the dayahead-optim action or end point.

The optimization results are:
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The battery state of charge plot is shown below:
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For this system the total value of the obtained cost function is -1.23 EUR, a substantial improvement when adding a battery.



Configuration example to pass data at runtime

As we showed in the forecast module section, we can pass our own forecast data using lists of values passed at runtime using templates. However, it is possible to also pass other data during runtime in order to automate the energy management.

For example, let’s suppose that for the default configuration with two deferrable loads we want to correlate and control them to the outside temperature. This will be used to build a list of the total number of hours for each deferrable load (def_total_hours). In this example the first deferrable load is a water heater and the second is the pool pump.

We will begin by defining a temperature sensor on a 12 hours sliding window using the filter platform for the outside temperature:

  - platform: filter
    name: "Outdoor temperature mean over last 12 hours"
    entity_id: sensor.temp_air_out
    filters:
      - filter: time_simple_moving_average
        window_size: "12:00"
        precision: 0





Then we will use a template sensor to build our list of the total number of hours for each deferrable load:

  - platform: template
    sensors:
      list_operating_hours_of_each_deferrable_load:
        value_template: >-
          {% if states("sensor.outdoor_temperature_mean_over_last_12_hours") < "10" %}
            {{ [5, 0] | list }}
          {% elif states("sensor.outdoor_temperature_mean_over_last_12_hours") >= "10" and states("sensor.outdoor_temperature_mean_over_last_12_hours") < "15" %}
            {{ [4, 0] | list }}
          {% elif states("sensor.outdoor_temperature_mean_over_last_12_hours") >= "15" and states("sensor.outdoor_temperature_mean_over_last_12_hours") < "20" %}
            {{ [4, 6] | list }}
          {% elif states("sensor.outdoor_temperature_mean_over_last_12_hours") >= "20" and states("sensor.outdoor_temperature_mean_over_last_12_hours") < "25" %}
            {{ [3, 9] | list }}
          {% else %}
            {{ [3, 12] | list }}
          {% endif %}





The values for the total number of operating hours were tuned by trial and error throughout a whole year. These values work fine for a 3000W water heater (the first value of the list) and a 750W pool pump (the second value in the list).

Finally my two shell commands for EMHASS will look like:

shell_command:
  dayahead_optim: "curl -i -H \"Content-Type: application/json\" -X POST -d '{\"def_total_hours\":{{states('sensor.list_operating_hours_of_each_deferrable_load')}}}' http://localhost:5000/action/dayahead-optim"
  publish_data: "curl -i -H \"Content-Type: application/json\" -X POST -d '{}' http://localhost:5000/action/publish-data"





The dedicated automations for these shell commands can be for example:

- alias: EMHASS day-ahead optimization
  trigger:
    platform: time
    at: '05:30:00'
  action:
  - service: shell_command.dayahead_optim
- alias: EMHASS publish data
  trigger:
  - minutes: /5
    platform: time_pattern
  action:
  - service: shell_command.publish_data





And as a bonus, an automation can be set to relaunch the optimization task automatically. This is very useful when restarting Home Assistant and when updating the EMHASS add-on:

- alias: Relaunch EMHASS tasks after HASS restart
  trigger:
  - platform: homeassistant
    event: start
  - platform: state
    entity_id: update.emhass_update
    to: 'off'
    for:
      minutes: 10
  action:
  - service: shell_command.dayahead_optim
  - service: notify.sms_free
    data_template:
      title: EMHASS relaunched optimization
      message: Home assistant restarted or the EMHASS add-on was updated and the optimization task was automatically relaunched







Some real forecast data

The real implementation of EMHASS and its efficiency depends on the quality of the forecasted PV power production and the house load consumption.

Here is an extract of the PV power production forecast with the default PV forecast method from EMHASS: a web scarpping of the clearoutside page based on the defined lat/lon location of the system. These are the forecast results of the GFS model compared with the real PV produced data for a 4 day period.
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Configuration file

In this section we will explain all the parts of the config_emhass.yaml needed to properly run EMHASS.

We will find three main parts on the configuration file:


	The parameters needed to retrieve data from Home Assistant (retrieve_hass_conf)


	The parameters to define the optimization problem (optim_conf)


	The parameters used to model the system (plant_conf)





Retrieve HASS data configuration

These are the parameters that we will need to define to retrieve data from Home Assistant. There are no optional parameters. In the case of a list, an empty list is a valid entry.


	freq: The time step to resample retrieved data from hass. This parameter is given in minutes. It should not be defined too low or you will run into memory problems when defining the Linear Programming optimization. Defaults to 30.


	days_to_retrieve: We will retrieve data from now and up to days_to_retrieve days. Defaults to 2.


	var_PV: This is the name of the photovoltaic produced power sensor in Watts from Home Assistant. For example: ‘sensor.power_photovoltaics’.


	var_load: The name of the household power consumption sensor in Watts from Home Assistant. The deferrable loads that we will want to include in the optimization problem should be substracted from this sensor in HASS. For example: ‘sensor.power_load_no_var_loads’


	load_negative: Set this parameter to True if the retrived load variable is negative by convention. Defaults to False.


	set_zero_min: Set this parameter to True to give a special treatment for a minimum value saturation to zero for power consumption data. Values below zero are replaced by nans. Defaults to True.


	var_replace_zero: The list of retrieved variables that we would want to replace nans (if they exist) with zeros. For example:


	‘sensor.power_photovoltaics’






	var_interp: The list of retrieved variables that we would want to interpolate nans values using linear interpolation. For example:


	‘sensor.power_photovoltaics’


	‘sensor.power_load_no_var_loads’






	method_ts_round: Set the method for timestamp rounding, options are: first, last and nearest.




A second part of this section is given by some privacy-sensitive parameters that should be included in a secrets_emhass.yaml file alongside the config_emhass.yaml file.

The parameters in the secrets_emhass.yaml file are:


	hass_url: The URL to your Home Assistant instance. For example: https://myhass.duckdns.org/


	long_lived_token: A Long-Lived Access Token from the Lovelace profile page.


	time_zone: The time zone of your system. For example: Europe/Paris.


	lat: The latitude. For example: 45.0.


	lon: The longitude. For example: 6.0


	alt: The altitude in meters. For example: 100.0






Optimization configuration parameters

These are the parameters needed to properly define the optimization problem.


	set_use_battery: Set to True if we should consider an energy storage device such as a Li-Ion battery. Defaults to False.


	delta_forecast: The number of days for forecasted data. Defaults to 1.


	num_def_loads: Define the number of deferrable loads to consider. Defaults to 2.


	P_deferrable_nom: The nominal power for each deferrable load in Watts. This is a list with a number of elements consistent with the number of deferrable loads defined before. For example:


	3000


	750






	def_total_hours: The total number of hours that each deferrable load should operate. For example:


	5


	8






	def_start_timestep: The timestep as from which each deferrable load is allowed to operate (if you don’t want the deferrable load to use the whole optimization timewindow). If you specify a value of 0 (or negative), the deferrable load will be optimized as from the beginning of the complete prediction horizon window. For example:


	0


	1






	def_end_timestep: The timestep before which each deferrable load should operate. The deferrable load is not allowed to operate after the specified timestep. If a value of 0 (or negative) is provided, the deferrable load is allowed to operate in the complete optimization window). For example:


	0


	3






	treat_def_as_semi_cont: Define if we should treat each deferrable load as a semi-continuous variable. Semi-continuous variables (True) are variables that must take a value that can be either their maximum or minimum/zero (for example On = Maximum load, Off = 0 W). Non semi-continuous (which means continuous) variables (False) can take any values between their maximum and minimum. For example:


	True


	True






	set_def_constant: Define if we should set each deferrable load as a constant fixed value variable with just one startup for each optimization task. For example:


	False


	False






	weather_forecast_method: This will define the weather forecast method that will be used. The options are ‘scrapper’ for a scrapping method for weather forecast from clearoutside.com and ‘csv’ to load a CSV file. When loading a CSV file this will be directly considered as the PV power forecast in Watts. The default CSV file path that will be used is ‘/data/data_weather_forecast.csv’. Defaults to ‘scrapper’ method.


	load_forecast_method: The load forecast method that will be used. The options are ‘csv’ to load a CSV file or ‘naive’ for a simple 1-day persistance model. The default CSV file path that will be used is ‘/data/data_load_forecast.csv’. Defaults to ‘naive’.


	load_cost_forecast_method: Define the method that will be used for load cost forecast. The options are ‘hp_hc_periods’ for peak and non-peak hours contracts and ‘csv’ to load custom cost from CSV file. The default CSV file path that will be used is ‘/data/data_load_cost_forecast.csv’.
The following parameters and definitions are only needed if load_cost_forecast_method=’hp_hc_periods’:


	list_hp_periods: Define a list of peak hour periods for load consumption from the grid. This is useful if you have a contract with peak and non-peak hours. For example for two peak hour periods:


	period_hp_1:


	start: ‘02:54’


	end: ‘15:24’






	period_hp_2:


	start: ‘17:24’


	end: ‘20:24’










	load_cost_hp: The cost of the electrical energy from the grid during peak hours in €/kWh. Defaults to 0.1907.


	load_cost_hc: The cost of the electrical energy from the grid during non-peak hours in €/kWh. Defaults to 0.1419.






	prod_price_forecast_method: Define the method that will be used for PV power production price forecast. This is the price that is payed by the utility for energy injected to the grid. The options are ‘constant’ for a constant fixed value or ‘csv’ to load custom price forecast from a CSV file. The default CSV file path that will be used is ‘/data/data_prod_price_forecast.csv’.


	prod_sell_price: The paid price for energy injected to the grid from excedent PV production in €/kWh. Defaults to 0.065. This parameter is only needed if prod_price_forecast_method=’constant’.


	set_total_pv_sell: Set this parameter to true to consider that all the PV power produced is injected to the grid. No direct self-consumption. The default is false, for as system with direct self-consumption.


	lp_solver: Set the name of the linear programming solver that will be used. Defaults to ‘COIN_CMD’. The options are ‘PULP_CBC_CMD’, ‘GLPK_CMD’ and ‘COIN_CMD’.


	lp_solver_path: Set the path to the LP solver. Defaults to ‘/usr/bin/cbc’.


	set_nocharge_from_grid: Set this to true if you want to forbidden to charge the battery from the grid. The battery will only be charged from excess PV.


	set_nodischarge_to_grid: Set this to true if you want to forbidden to discharge the battery power to the grid.


	set_battery_dynamic: Set a power dynamic limiting condition to the battery power. This is an additional constraint on the battery dynamic in power per unit of time, which allows you to set a percentage of the battery nominal full power as the maximum power allowed for (dis)charge.


	battery_dynamic_max: The maximum positive (for discharge) battery power dynamic. This is the allowed power variation (in percentage) of battery maximum power per unit of time.


	battery_dynamic_min: The maximum negative (for charge) battery power dynamic. This is the allowed power variation (in percentage) of battery maximum power per unit of time.


	weight_battery_discharge: An additional weight (currency/ kWh) applied in cost function to battery usage for discharge. Defaults to 0.00


	weight_battery_charge: An additional weight (currency/ kWh) applied in cost function to battery usage for charge. Defaults to 0.00






System configuration parameters

These are the technical parameters of the energy system of the household.


	P_grid_max: The maximum power that can be supplied by the utility grid in Watts. Defaults to 9000.




We will define the technical parameters of the PV installation. For the modeling task we rely on the PVLib Python package. For more information see: https://pvlib-python.readthedocs.io/en/stable/
The complete list of supported modules can be found here: https://github.com/davidusb-geek/emhass-add-on/files/9234460/sam-library-cec-modules-2019-03-05.csv
And the list of inverter models can be found here: https://github.com/davidusb-geek/emhass-add-on/files/9532724/sam-library-cec-inverters-2019-03-05.csv
If your specific model is not found in these lists then solution (1) is to pick another model as close as possible as yours in terms of the nominal power.
Solution (2) would be to use SolCast and pass that data directly to emhass as a list of values from a template. Take a look at this example here: https://emhass.readthedocs.io/en/latest/forecasts.html#example-using-solcast-forecast-amber-prices


	module_model: The PV module model. For example: ‘CSUN_Eurasia_Energy_Systems_Industry_and_Trade_CSUN295_60M’. This parameter can be a list of items to enable the simulation of mixed orientation systems, for example one east-facing array (azimuth=90) and one west-facing array (azimuth=270). When finding the correct model for your installation remember to replace all the special characters in the model name by ‘_’.


	inverter_model: The PV inverter model. For example: ‘Fronius_International_GmbH__Fronius_Primo_5_0_1_208_240__240V_’. This parameter can be a list of items to enable the simulation of mixed orientation systems, for example one east-facing array (azimuth=90) and one west-facing array (azimuth=270). When finding the correct model for your installation remember to replace all the special characters in the model name by ‘_’.


	surface_tilt: The tilt angle of your solar panels. Defaults to 30. This parameter can be a list of items to enable the simulation of mixed orientation systems, for example one east-facing array (azimuth=90) and one west-facing array (azimuth=270).


	surface_azimuth: The azimuth of your PV installation. Defaults to 205. This parameter can be a list of items to enable the simulation of mixed orientation systems, for example one east-facing array (azimuth=90) and one west-facing array (azimuth=270).


	modules_per_string: The number of modules per string. Defaults to 16. This parameter can be a list of items to enable the simulation of mixed orientation systems, for example one east-facing array (azimuth=90) and one west-facing array (azimuth=270).


	strings_per_inverter: The number of used strings per inverter. Defaults to 1. This parameter can be a list of items to enable the simulation of mixed orientation systems, for example one east-facing array (azimuth=90) and one west-facing array (azimuth=270).




If your system has a battery (set_use_battery=True), then you should define the following parameters:


	Pd_max: The maximum discharge power in Watts. Defaults to 1000.


	Pc_max: The maximum charge power in Watts. Defaults to 1000.


	eta_disch: The discharge efficiency. Defaults to 0.95.


	eta_ch: The charge efficiency. Defaults to 0.95.


	Enom: The total capacity of the battery stack in Wh. Defaults to 5000.


	SOCmin: The minimun allowable battery state of charge. Defaults to 0.3.


	SOCmax: The maximum allowable battery state of charge. Defaults to 0.9.


	SOCtarget: The desired battery state of charge at the end of each optimization cycle. Defaults to 0.6.
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API Reference


emhass.command_line module


	
emhass.command_line.dayahead_forecast_optim(input_data_dict: dict, logger: Logger, save_data_to_file: bool | None = False, debug: bool | None = False) → DataFrame

	Perform a call to the day-ahead optimization routine.


	Parameters:

	
	input_data_dict (dict) – A dictionnary with multiple data used by the action functions


	logger (logging object) – The passed logger object


	save_data_to_file (bool, optional) – Save optimization results to CSV file


	debug (bool, optional) – A debug option useful for unittests






	Returns:

	The output data of the optimization



	Return type:

	pd.DataFrame










	
emhass.command_line.forecast_model_fit(input_data_dict: dict, logger: Logger, debug: bool | None = False) → Tuple[DataFrame, DataFrame, MLForecaster]

	Perform a forecast model fit from training data retrieved from Home Assistant.


	Parameters:

	
	input_data_dict (dict) – A dictionnary with multiple data used by the action functions


	logger (logging.Logger) – The passed logger object


	debug (Optional[bool], optional) – True to debug, useful for unit testing, defaults to False






	Returns:

	The DataFrame containing the forecast data results without and with backtest and the mlforecaster object



	Return type:

	Tuple[pd.DataFrame, pd.DataFrame, mlforecaster]










	
emhass.command_line.forecast_model_predict(input_data_dict: dict, logger: Logger, use_last_window: bool | None = True, debug: bool | None = False, mlf: MLForecaster | None = None) → DataFrame

	Perform a forecast model predict using a previously trained skforecast model.


	Parameters:

	
	input_data_dict (dict) – A dictionnary with multiple data used by the action functions


	logger (logging.Logger) – The passed logger object


	use_last_window (Optional[bool], optional) – True if the ‘last_window’ option should be used for the custom machine learning forecast model. The ‘last_window=True’ means that the data that will be used to generate the new forecast will be freshly retrieved from Home Assistant. This data is needed because the forecast model is an auto-regressive model with lags. If ‘False’ then the data using during the model train is used. Defaults to True


	debug (Optional[bool], optional) – True to debug, useful for unit testing, defaults to False


	mlf (Optional[mlforecaster], optional) – The ‘mlforecaster’ object previously trained. This is mainly used for debug and unit testing. In production the actual model will be read from a saved pickle file. Defaults to None






	Returns:

	The DataFrame containing the forecast prediction data



	Return type:

	pd.DataFrame










	
emhass.command_line.forecast_model_tune(input_data_dict: dict, logger: Logger, debug: bool | None = False, mlf: MLForecaster | None = None) → Tuple[DataFrame, MLForecaster]

	Tune a forecast model hyperparameters using bayesian optimization.


	Parameters:

	
	input_data_dict (dict) – A dictionnary with multiple data used by the action functions


	logger (logging.Logger) – The passed logger object


	debug (Optional[bool], optional) – True to debug, useful for unit testing, defaults to False


	mlf (Optional[mlforecaster], optional) – The ‘mlforecaster’ object previously trained. This is mainly used for debug         and unit testing. In production the actual model will be read from a saved pickle file. Defaults to None






	Returns:

	The DataFrame containing the forecast data results using the optimized model



	Return type:

	pd.DataFrame










	
emhass.command_line.main()

	Define the main command line entry function.

This function may take several arguments as inputs. You can type emhass –help to see the list of options:


	action: Set the desired action, options are: perfect-optim, dayahead-optim,
naive-mpc-optim, publish-data, forecast-model-fit, forecast-model-predict, forecast-model-tune


	config: Define path to the config.yaml file


	costfun: Define the type of cost function, options are: profit, cost, self-consumption


	log2file: Define if we should log to a file or not


	params: Configuration parameters passed from data/options.json if using the add-on


	runtimeparams: Pass runtime optimization parameters as dictionnary


	debug: Use True for testing purposes









	
emhass.command_line.naive_mpc_optim(input_data_dict: dict, logger: Logger, save_data_to_file: bool | None = False, debug: bool | None = False) → DataFrame

	Perform a call to the naive Model Predictive Controller optimization routine.


	Parameters:

	
	input_data_dict (dict) – A dictionnary with multiple data used by the action functions


	logger (logging object) – The passed logger object


	save_data_to_file (bool, optional) – Save optimization results to CSV file


	debug (bool, optional) – A debug option useful for unittests






	Returns:

	The output data of the optimization



	Return type:

	pd.DataFrame










	
emhass.command_line.perfect_forecast_optim(input_data_dict: dict, logger: Logger, save_data_to_file: bool | None = True, debug: bool | None = False) → DataFrame

	Perform a call to the perfect forecast optimization routine.


	Parameters:

	
	input_data_dict (dict) – A dictionnary with multiple data used by the action functions


	logger (logging object) – The passed logger object


	save_data_to_file (bool, optional) – Save optimization results to CSV file


	debug (bool, optional) – A debug option useful for unittests






	Returns:

	The output data of the optimization



	Return type:

	pd.DataFrame










	
emhass.command_line.publish_data(input_data_dict: dict, logger: Logger, save_data_to_file: bool | None = False, opt_res_latest: DataFrame | None = None) → DataFrame

	Publish the data obtained from the optimization results.


	Parameters:

	
	input_data_dict (dict) – A dictionnary with multiple data used by the action functions


	logger (logging object) – The passed logger object


	save_data_to_file (bool, optional) – If True we will read data from optimization results in dayahead CSV file






	Returns:

	The output data of the optimization readed from a CSV file in the data folder



	Return type:

	pd.DataFrame










	
emhass.command_line.set_input_data_dict(config_path: Path, base_path: str, costfun: str, params: str, runtimeparams: str, set_type: str, logger: Logger, get_data_from_file: bool | None = False) → dict

	Set up some of the data needed for the different actions.


	Parameters:

	
	config_path (pathlib.Path) – The complete absolute path where the config.yaml file is located


	base_path (str) – The parent folder of the config_path


	costfun (str) – The type of cost function to use for optimization problem


	params (str) – Configuration parameters passed from data/options.json


	runtimeparams (str) – Runtime optimization parameters passed as a dictionnary


	set_type (str) – Set the type of setup based on following type of optimization


	logger (logging object) – The passed logger object


	get_data_from_file (bool, optional) – Use data from saved CSV file (useful for debug)






	Returns:

	A dictionnary with multiple data used by the action functions



	Return type:

	dict











emhass.forecast module


	
class emhass.forecast.Forecast(retrieve_hass_conf: dict, optim_conf: dict, plant_conf: dict, params: str, base_path: str, logger: Logger, opt_time_delta: int | None = 24, get_data_from_file: bool | None = False)

	Bases: object

Generate weather, load and costs forecasts needed as inputs to the optimization.

In EMHASS we have basically 4 forecasts to deal with:


	PV power production forecast (internally based on the weather forecast and the
characteristics of your PV plant). This is given in Watts.


	Load power forecast: how much power your house will demand on the next 24h. This
is given in Watts.


	PV production selling price forecast: at what price are you selling your excess
PV production on the next 24h. This is given in EUR/kWh.


	Load cost forecast: the price of the energy from the grid on the next 24h. This
is given in EUR/kWh.




There are methods that are generalized to the 4 forecast needed. For all there
forecasts it is possible to pass the data either as a passed list of values or by
reading from a CSV file. With these methods it is then possible to use data from
external forecast providers.

Then there are the methods that are specific to each type of forecast and that 
proposed forecast treated and generated internally by this EMHASS forecast class.
For the weather forecast a first method (scrapper) uses a scrapping to the 
ClearOutside webpage which proposes detailed forecasts based on Lat/Lon locations. 
This method seems stable but as with any scrape method it will fail if any changes 
are made to the webpage API. Another method (solcast) is using the SolCast PV 
production forecast service. A final method (solar.forecast) is using another 
external service: Solar.Forecast, for which just the nominal PV peak installed 
power should be provided. Search the forecast section on the documentation for examples 
on how to implement these different methods.

The get_power_from_weather method is proposed here to convert from irradiance
data to electrical power. The PVLib module is used to model the PV plant.

The specific methods for the load forecast are a first method (naive) that uses 
a naive approach, also called persistance. It simply assumes that the forecast for 
a future period will be equal to the observed values in a past period. The past 
period is controlled using parameter delta_forecast. A second method (mlforecaster)
uses an internal custom forecasting model using machine learning. There is a section
in the documentation explaining how to use this method.


Note

This custom machine learning model is introduced from v0.4.0. EMHASS proposed this new mlforecaster class with fit, predict and tune methods. Only the predict method is used here to generate new forecasts, but it is necessary to previously fit a forecaster model and it is a good idea to optimize the model hyperparameters using the tune method. See the dedicated section in the documentation for more help.



For the PV production selling price and Load cost forecasts the privileged method
is a direct read from a user provided list of values. The list should be passed
as a runtime parameter during the curl to the EMHASS API.

I reading from a CSV file, it should contain no header and the timestamped data 
should have the following format:

2021-04-29 00:00:00+00:00,287.07

2021-04-29 00:30:00+00:00,274.27

2021-04-29 01:00:00+00:00,243.38

…

The data columns in these files will correspond to the data in the units expected
for each forecasting method.


	
cloud_cover_to_irradiance(cloud_cover: Series, offset: int | None = 35) → DataFrame

	Estimates irradiance from cloud cover in the following steps.


	Determine clear sky GHI using Ineichen model and
climatological turbidity.


	Estimate cloudy sky GHI using a function of cloud_cover


	Estimate cloudy sky DNI using the DISC model.


	Calculate DHI from DNI and GHI.




(This function was copied and modified from PVLib)


	Parameters:

	
	cloud_cover (pd.Series) – Cloud cover in %.


	offset (Optional[int], optional) – Determines the minimum GHI., defaults to 35






	Returns:

	Estimated GHI, DNI, and DHI.



	Return type:

	pd.DataFrame










	
get_forecast_days_csv(timedelta_days: int | None = 1) → date_range

	Get the date range vector of forecast dates that will be used when loading a CSV file.


	Returns:

	The forecast dates vector



	Return type:

	pd.date_range










	
get_forecast_out_from_csv(df_final: DataFrame, forecast_dates_csv: date_range, csv_path: str, data_list: list | None = None) → DataFrame

	Get the forecast data as a DataFrame from a CSV file.

The data contained in the CSV file should be a 24h forecast with the same frequency as 
the main ‘freq’ parameter in the configuration file. The timestamp will not be used and 
a new DateTimeIndex is generated to fit the timestamp index of the input data in ‘df_final’.


	Parameters:

	
	df_final (pd.DataFrame) – The DataFrame containing the input data.


	forecast_dates_csv (pd.date_range) – The forecast dates vector


	csv_path (str) – The path to the CSV file






	Returns:

	The data from the CSV file



	Return type:

	pd.DataFrame










	
get_load_cost_forecast(df_final: DataFrame, method: str | None = 'hp_hc_periods', csv_path: str | None = 'data_load_cost_forecast.csv') → DataFrame

	Get the unit cost for the load consumption based on multiple tariff periods. This is the cost of the energy from the utility in a vector sampled at the fixed freq value.


	Parameters:

	
	df_final (pd.DataFrame) – The DataFrame containing the input data.


	method (str, optional) – The method to be used to generate load cost forecast, the options are ‘hp_hc_periods’ for peak and non-peak hours contractsand ‘csv’ to load a CSV file, defaults to ‘hp_hc_periods’


	csv_path (str, optional) – The path to the CSV file used when method = ‘csv’, defaults to “data_load_cost_forecast.csv”






	Returns:

	The input DataFrame with one additionnal column appended containing
the load cost for each time observation.



	Return type:

	pd.DataFrame










	
get_load_forecast(days_min_load_forecast: int | None = 3, method: str | None = 'naive', csv_path: str | None = '/data/data_load_forecast.csv', set_mix_forecast: bool | None = False, df_now: ~pandas.core.frame.DataFrame | None = Empty DataFrame Columns: [] Index: [], use_last_window: bool | None = True, mlf: ~emhass.machine_learning_forecaster.MLForecaster | None = None, debug: bool | None = False) → Series

	Get and generate the load forecast data.


	Parameters:

	
	days_min_load_forecast (int, optional) – The number of last days to retrieve that will be used to generate a naive forecast, defaults to 3


	method (str, optional) – The method to be used to generate load forecast, the options are ‘naive’ for a persistance model, ‘mlforecaster’ for using a custom previously fitted machine learning model, ‘csv’ to read the forecast from a CSV file and ‘list’ to use data directly passed at runtime as a list of values. Defaults to ‘naive’.


	csv_path (str, optional) – The path to the CSV file used when method = ‘csv’, defaults to “/data/data_load_forecast.csv”


	set_mix_forecast (Bool, optional) – Use a mixed forcast strategy to integra now/current values.


	df_now (pd.DataFrame, optional) – The DataFrame containing the now/current data.


	use_last_window (Bool, optional) – True if the ‘last_window’ option should be used for the custom machine learning forecast model. The ‘last_window=True’ means that the data that will be used to generate the new forecast will be freshly retrieved from Home Assistant. This data is needed because the forecast model is an auto-regressive model with lags. If ‘False’ then the data using during the model train is used.


	mlf (mlforecaster, optional) – The ‘mlforecaster’ object previously trained. This is mainly used for debug and unit testing. In production the actual model will be read from a saved pickle file.


	debug (Bool, optional) – The DataFrame containing the now/current data.






	Returns:

	The DataFrame containing the electrical load power in Watts



	Return type:

	pd.DataFrame










	
static get_mix_forecast(df_now: DataFrame, df_forecast: DataFrame, alpha: float, beta: float, col: str) → DataFrame

	A simple correction method for forecasted data using the current real values of a variable.


	Parameters:

	
	df_now (pd.DataFrame) – The DataFrame containing the current/real values


	df_forecast (pd.DataFrame) – The DataFrame containing the forecast data


	alpha (float) – A weight for the forecast data side


	beta (float) – A weight for the current/real values sied


	col (str) – The column variable name






	Returns:

	The output DataFrame with the corrected values



	Return type:

	pd.DataFrame










	
get_power_from_weather(df_weather: ~pandas.core.frame.DataFrame, set_mix_forecast: bool | None = False, df_now: ~pandas.core.frame.DataFrame | None = Empty DataFrame Columns: [] Index: []) → Series

	Convert wheater forecast data into electrical power.


	Parameters:

	
	df_weather (pd.DataFrame) – The DataFrame containing the weather forecasted data. This DF should be generated by the ‘get_weather_forecast’ method or at least contain the same columns names filled with proper data.


	set_mix_forecast (Bool, optional) – Use a mixed forcast strategy to integra now/current values.


	df_now (pd.DataFrame) – The DataFrame containing the now/current data.






	Returns:

	The DataFrame containing the electrical power in Watts



	Return type:

	pd.DataFrame










	
get_prod_price_forecast(df_final: DataFrame, method: str | None = 'constant', csv_path: str | None = '/data/data_prod_price_forecast.csv') → DataFrame

	Get the unit power production price for the energy injected to the grid.This is the price of the energy injected to the utility in a vector sampled at the fixed freq value.


	Parameters:

	
	df_input_data (pd.DataFrame) – The DataFrame containing all the input data retrieved
from hass


	method (str, optional) – The method to be used to generate the production price forecast, the options are ‘constant’ for a fixed constant value and ‘csv’to load a CSV file, defaults to ‘constant’


	csv_path (str, optional) – The path to the CSV file used when method = ‘csv’, defaults to “/data/data_load_cost_forecast.csv”






	Returns:

	The input DataFrame with one additionnal column appended containing
the power production price for each time observation.



	Return type:

	pd.DataFrame










	
get_weather_forecast(method: str | None = 'scrapper', csv_path: str | None = '/data/data_weather_forecast.csv') → DataFrame

	Get and generate weather forecast data.


	Parameters:

	method (str, optional) – The desired method, options are ‘scrapper’, ‘csv’, ‘list’, ‘solcast’ and ‘solar.forecast’. Defaults to ‘scrapper’.



	Returns:

	The DataFrame containing the forecasted data



	Return type:

	pd.DataFrame















emhass.machine_learning_forecaster module


	
class emhass.machine_learning_forecaster.MLForecaster(data: DataFrame, model_type: str, var_model: str, sklearn_model: str, num_lags: int, root: str, logger: Logger)

	Bases: object

A forecaster class using machine learning models with auto-regressive approach and featuresbased on timestamp information (hour, day, week, etc).

This class uses the skforecast module and the machine learning models are from scikit-learn.

It exposes three main methods:


	fit: to train a model with the passed data.


	predict: to obtain a forecast from a pre-trained model.


	tune: to optimize the models hyperparameters using bayesian optimization.





	
static add_date_features(data: DataFrame) → DataFrame

	Add date features from the input DataFrame timestamp


	Parameters:

	data (pd.DataFrame) – The input DataFrame



	Returns:

	The DataFrame with the added features



	Return type:

	pd.DataFrame










	
fit(split_date_delta: str | None = '48h', perform_backtest: bool | None = False) → Tuple[DataFrame, DataFrame]

	The fit method to train the ML model.


	Parameters:

	
	split_date_delta (Optional[str], optional) – The delta from now to split_date_delta that will be used as the test period to evaluate the model, defaults to ‘48h’


	perform_backtest (Optional[bool], optional) – If True then a back testing routine is performed to evaluate the performance of the model on the complete train set, defaults to False






	Returns:

	The DataFrame containing the forecast data results without and with backtest



	Return type:

	Tuple[pd.DataFrame, pd.DataFrame]










	
static generate_exog(data_last_window, periods, var_name)

	Generate the exogenous data for future timestamps.






	
static neg_r2_score(y_true, y_pred)

	The negative of the r2 score.






	
predict(data_last_window: DataFrame | None = None) → Series

	The predict method to generate forecasts from a previously fitted ML model.


	Parameters:

	data_last_window (Optional[pd.DataFrame], optional) – The data that will be used to generate the new forecast, this             will be freshly retrieved from Home Assistant. This data is needed because the forecast             model is an auto-regressive model with lags. If not passed then the data used during the             model train is used, defaults to None



	Returns:

	A pandas series containing the generated forecasts.



	Return type:

	pd.Series










	
tune(debug: bool | None = False) → DataFrame

	Tuning a previously fitted model using bayesian optimization.


	Parameters:

	debug (Optional[bool], optional) – Set to True for testing and faster optimizations, defaults to False



	Returns:

	The DataFrame with the forecasts using the optimized model.



	Return type:

	pd.DataFrame















emhass.optimization module


	
class emhass.optimization.Optimization(retrieve_hass_conf: dict, optim_conf: dict, plant_conf: dict, var_load_cost: str, var_prod_price: str, costfun: str, base_path: str, logger: Logger, opt_time_delta: int | None = 24)

	Bases: object

Optimize the deferrable load and battery energy dispatch problem using 
the linear programming optimization technique. All equipement equations, including the battery equations are hence transformed in a linear form.

This class methods are:


	perform_optimization


	perform_perfect_forecast_optim


	perform_dayahead_forecast_optim


	perform_naive_mpc_optim





	
perform_dayahead_forecast_optim(df_input_data: DataFrame, P_PV: Series, P_load: Series) → DataFrame

	Perform a day-ahead optimization task using real forecast data. This type of optimization is intented to be launched once a day.


	Parameters:

	
	df_input_data (pandas.DataFrame) – A DataFrame containing all the input data used for the optimization, notably the unit load cost for power consumption.


	P_PV (pandas.DataFrame) – The forecasted PV power production.


	P_load (pandas.DataFrame) – The forecasted Load power consumption. This power should not include the power from the deferrable load that we want to find.






	Returns:

	opt_res: A DataFrame containing the optimization results



	Return type:

	pandas.DataFrame










	
perform_naive_mpc_optim(df_input_data: DataFrame, P_PV: Series, P_load: Series, prediction_horizon: int, soc_init: float | None = None, soc_final: float | None = None, def_total_hours: list | None = None, def_start_timestep: list | None = None, def_end_timestep: list | None = None) → DataFrame

	Perform a naive approach to a Model Predictive Control (MPC). This implementaion is naive because we are not using the formal formulation of a MPC. Only the sense of a receiding horizon is considered here. This optimization is more suitable for higher optimization frequency, ex: 5min.


	Parameters:

	
	df_input_data (pandas.DataFrame) – A DataFrame containing all the input data used for the optimization, notably the unit load cost for power consumption.


	P_PV (pandas.DataFrame) – The forecasted PV power production.


	P_load (pandas.DataFrame) – The forecasted Load power consumption. This power should not include the power from the deferrable load that we want to find.


	prediction_horizon (int) – The prediction horizon of the MPC controller in number of optimization time steps.


	soc_init (float) – The initial battery SOC for the optimization. This parameter is optional, if not given soc_init = soc_final = soc_target from the configuration file.


	soc_final – The final battery SOC for the optimization. This parameter is optional, if not given soc_init = soc_final = soc_target from the configuration file.


	def_total_hours (list) – The functioning hours for this iteration for each deferrable load. (For continuous deferrable loads: functioning hours at nominal power)


	def_start_timestep (list) – The timestep as from which each deferrable load is allowed to operate.


	def_end_timestep (list) – The timestep before which each deferrable load should operate.






	Returns:

	opt_res: A DataFrame containing the optimization results



	Return type:

	pandas.DataFrame










	
perform_optimization(data_opt: DataFrame, P_PV: array, P_load: array, unit_load_cost: array, unit_prod_price: array, soc_init: float | None = None, soc_final: float | None = None, def_total_hours: list | None = None, def_start_timestep: list | None = None, def_end_timestep: list | None = None, debug: bool | None = False) → DataFrame

	Perform the actual optimization using linear programming (LP).


	Parameters:

	
	data_tp (pd.DataFrame) – A DataFrame containing the input data. The results of the optimization will be appended (decision variables, cost function values, etc)


	P_PV (numpy.array) – The photovoltaic power values. This can be real historical values or forecasted values.


	P_load (np.array) – The load power consumption values


	unit_load_cost (np.array) – The cost of power consumption for each unit of time. This is the cost of the energy from the utility in a vector sampled at the fixed freq value


	unit_prod_price (np.array) – The price of power injected to the grid each unit of time. This is the price of the energy injected to the utility in a vector sampled at the fixed freq value.


	soc_init (float) – The initial battery SOC for the optimization. This parameter is optional, if not given soc_init = soc_final = soc_target from the configuration file.


	soc_final – The final battery SOC for the optimization. This parameter is optional, if not given soc_init = soc_final = soc_target from the configuration file.


	def_total_hours (list) – The functioning hours for this iteration for each deferrable load. (For continuous deferrable loads: functioning hours at nominal power)


	def_start_timestep (list) – The timestep as from which each deferrable load is allowed to operate.


	def_end_timestep (list) – The timestep before which each deferrable load should operate.






	Returns:

	The input DataFrame with all the different results from the optimization appended



	Return type:

	pd.DataFrame










	
perform_perfect_forecast_optim(df_input_data: DataFrame, days_list: date_range) → DataFrame

	Perform an optimization on historical data (perfectly known PV production).


	Parameters:

	
	df_input_data (pandas.DataFrame) – A DataFrame containing all the input data used for the optimization, notably photovoltaics and load consumption powers.


	days_list (list) – A list of the days of data that will be retrieved from hass and used for the optimization task. We will retrieve data from now and up to days_to_retrieve days






	Returns:

	opt_res: A DataFrame containing the optimization results



	Return type:

	pandas.DataFrame










	
static validate_def_timewindow(start: int, end: int, min_steps: int, window: int) → Tuple[int, int, str]

	Helper function to validate (and if necessary: correct) the defined optimization window of a deferrable load.


	Parameters:

	
	start (int) – Start timestep of the optimization window of the deferrable load


	end (int) – End timestep of the optimization window of the deferrable load


	min_steps (int) – Minimal timesteps during which the load should operate (at nominal power)


	window (int) – Total number of timesteps in the optimization window






	Returns:

	start_validated: Validated start timestep of the optimization window of the deferrable load



	Return type:

	int



	Returns:

	end_validated: Validated end timestep of the optimization window of the deferrable load



	Return type:

	int



	Returns:

	warning: Any warning information to be returned from the validation steps



	Return type:

	string















emhass.retrieve_hass module


	
class emhass.retrieve_hass.RetrieveHass(hass_url: str, long_lived_token: str, freq: Timedelta, time_zone: timezone, params: str, base_path: str, logger: Logger, get_data_from_file: bool | None = False)

	Bases: object

Retrieve data from Home Assistant using the restful API.

This class allows the user to retrieve data from a Home Assistant instance using the provided restful API (https://developers.home-assistant.io/docs/api/rest/)

This class methods are:


	get_data: to retrieve the actual data from hass


	prepare_data: to apply some data treatment in preparation for the optimization task


	post_data: Post passed data to hass





	
static get_attr_data_dict(data_df: DataFrame, idx: int, entity_id: str, unit_of_measurement: str, friendly_name: str, list_name: str, state: float) → dict

	




	
get_data(days_list: date_range, var_list: list, minimal_response: bool | None = False, significant_changes_only: bool | None = False, test_url: str | None = 'empty') → None

	Retrieve the actual data from hass.


	Parameters:

	
	days_list (pandas.date_range) – A list of days to retrieve. The ISO format should be used and the timezone is UTC. The frequency of the data_range should be freq=’D’


	var_list (list) – The list of variables to retrive from hass. These should be the exact name of the sensor in Home Assistant. For example: [‘sensor.home_load’, ‘sensor.home_pv’]


	minimal_response (bool, optional) – Retrieve a minimal response using the hass restful API, defaults to False


	significant_changes_only (bool, optional) – Retrieve significant changes only using the hass restful API, defaults to False






	Returns:

	The DataFrame populated with the retrieved data from hass



	Return type:

	pandas.DataFrame






Warning

The minimal_response and significant_changes_only options are experimental








	
post_data(data_df: DataFrame, idx: int, entity_id: str, unit_of_measurement: str, friendly_name: str, type_var: str, from_mlforecaster: bool | None = False, publish_prefix: str | None = '') → None

	Post passed data to hass.


	Parameters:

	
	data_df (pd.DataFrame) – The DataFrame containing the data that will be posted to hass. This should be a one columns DF or a series.


	idx (int) – The int index of the location of the data within the passed DataFrame. We will post just one value at a time.


	entity_id (str) – The unique entity_id of the sensor in hass.


	unit_of_measurement (str) – The units of the sensor.


	friendly_name (str) – The friendly name that will be used in the hass frontend.


	type_var (str) – A variable to indicate the type of variable: power, SOC, etc.


	publish_prefix (str, optional) – A common prefix for all published data entity_id.













	
prepare_data(var_load: str, load_negative: bool | None = False, set_zero_min: bool | None = True, var_replace_zero: list | None = None, var_interp: list | None = None) → None

	Apply some data treatment in preparation for the optimization task.


	Parameters:

	
	var_load (str) – The name of the variable for the household load consumption.


	load_negative (bool, optional) – Set to True if the retrived load variable is negative by convention, defaults to False


	set_zero_min (bool, optional) – A special treatment for a minimum value saturation to zero. Values below zero are replaced by nans, defaults to True


	var_replace_zero (list, optional) – A list of retrived variables that we would want to replace nans with zeros, defaults to None


	var_interp (list, optional) – A list of retrived variables that we would want to interpolate nan values using linear interpolation, defaults to None






	Returns:

	The DataFrame populated with the retrieved data from hass and after the data treatment



	Return type:

	pandas.DataFrame















emhass.utils module


	
emhass.utils.build_params(params: dict, params_secrets: dict, options: dict, addon: int, logger: Logger) → dict

	Build the main params dictionary from the loaded options.json when using the add-on.


	Parameters:

	
	params (dict) – The main params dictionary


	params_secrets (dict) – The dictionary containing the secret protected variables


	options (dict) – The load dictionary from options.json


	addon (int) – A “bool” to select if we are using the add-on


	logger (logging.Logger) – The logger object






	Returns:

	The builded dictionary



	Return type:

	dict










	
emhass.utils.get_days_list(days_to_retrieve: int) → date_range

	Get list of past days from today to days_to_retrieve.


	Parameters:

	days_to_retrieve (int) – Total number of days to retrieve from the past



	Returns:

	The list of days



	Return type:

	pd.date_range










	
emhass.utils.get_forecast_dates(freq: int, delta_forecast: int, timedelta_days: int | None = 0) → DatetimeIndex

	Get the date_range list of the needed future dates using the delta_forecast parameter.


	Parameters:

	
	freq (int) – Optimization time step.


	delta_forecast (int) – Number of days to forecast in the future to be used for the optimization.


	timedelta_days (Optional[int], optional) – Number of truncated days needed for each optimization iteration, defaults to 0






	Returns:

	A list of future forecast dates.



	Return type:

	pd.core.indexes.datetimes.DatetimeIndex










	
emhass.utils.get_injection_dict(df: DataFrame, plot_size: int | None = 1366) → dict

	Build a dictionary with graphs and tables for the webui.


	Parameters:

	
	df (pd.DataFrame) – The optimization result DataFrame


	plot_size (Optional[int], optional) – Size of the plot figure in pixels, defaults to 1366






	Returns:

	A dictionary containing the graphs and tables in html format



	Return type:

	dict










	
emhass.utils.get_injection_dict_forecast_model_fit(df_fit_pred: DataFrame, mlf: MLForecaster) → dict

	Build a dictionary with graphs and tables for the webui for special MLF fit case.


	Parameters:

	
	df_fit_pred (pd.DataFrame) – The fit result DataFrame


	mlf (MLForecaster) – The MLForecaster object






	Returns:

	A dictionary containing the graphs and tables in html format



	Return type:

	dict










	
emhass.utils.get_injection_dict_forecast_model_tune(df_pred_optim: DataFrame, mlf: MLForecaster) → dict

	Build a dictionary with graphs and tables for the webui for special MLF tune case.


	Parameters:

	
	df_pred_optim (pd.DataFrame) – The tune result DataFrame


	mlf (MLForecaster) – The MLForecaster object






	Returns:

	A dictionary containing the graphs and tables in html format



	Return type:

	dict










	
emhass.utils.get_logger(fun_name: str, config_path: str, save_to_file: bool | None = True, logging_level: str | None = 'DEBUG') → Tuple[Logger, StreamHandler]

	Create a simple logger object.


	Parameters:

	
	fun_name (str) – The Python function object name where the logger will be used


	config_path (str) – The path to the yaml configuration file


	save_to_file (bool, optional) – Write log to a file, defaults to True






	Returns:

	The logger object and the handler



	Return type:

	object










	
emhass.utils.get_root(file: str, num_parent: int | None = 3) → str

	Get the root absolute path of the working directory.


	Parameters:

	
	file – The passed file path with __file__


	num_parent (int, optional) – The number of parents levels up to desired root folder






	Returns:

	The root path



	Return type:

	str










	
emhass.utils.get_yaml_parse(config_path: str, use_secrets: bool | None = True, params: str | None = None) → Tuple[dict, dict, dict]

	Perform parsing of the config.yaml file.


	Parameters:

	
	config_path (str) – The path to the yaml configuration file


	use_secrets (bool, optional) – Indicate if we should use a secrets file or not.
Set to False for unit tests.


	params (str) – Configuration parameters passed from data/options.json






	Returns:

	A tuple with the dictionaries containing the parsed data



	Return type:

	tuple(dict)










	
emhass.utils.set_df_index_freq(df: DataFrame) → DataFrame

	Set the freq of a DataFrame DateTimeIndex.


	Parameters:

	df (pd.DataFrame) – Input DataFrame



	Returns:

	Input DataFrame with freq defined



	Return type:

	pd.DataFrame










	
emhass.utils.treat_runtimeparams(runtimeparams: str, params: str, retrieve_hass_conf: dict, optim_conf: dict, plant_conf: dict, set_type: str, logger: Logger) → Tuple[str, dict]

	Treat the passed optimization runtime parameters.


	Parameters:

	
	runtimeparams (str) – Json string containing the runtime parameters dict.


	params (str) – Configuration parameters passed from data/options.json


	retrieve_hass_conf (dict) – Container for data retrieving parameters.


	optim_conf (dict) – Container for optimization parameters.


	plant_conf (dict) – Container for technical plant parameters.


	set_type (str) – The type of action to be performed.


	logger (logging.Logger) – The logger object.






	Returns:

	Returning the params and optimization parameter container.



	Return type:

	Tuple[str, dict]
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EMHASS Development

There are multiple different approaches to developing EMHASS.

The choice depends on EMHASS mode (standalone/add-on) and preference (Python venv/DevContainer/Docker).

Below are some development workflow examples:

Note: It is preferred to run both addon mode, standalone mode and unitest once before submitting and pull request.


Step 1 - Fork

With your preferred Git tool of choice:

Fork the EMHASS github repository into your own account, then clone the forked repository into your local development platform. (ie. PC or Codespace)



Step 2 - Develop

To develop and test code choose one of the following methods:


Method 1 - Python Virtual Environment

We can use python virtual environments to build, develop and test/unitest the code.
This method works well with standalone mode.

confirm terminal is in the root emhass directory before starting

Install requirements

python3 -m pip install -r requirements.txt #if arm try setting --extra-index-url=https://www.piwheels.org/simple





Create a developer environment:

python3 -m venv .venv





Activate the environment:


	linux:

source .venv/bin/activate







	windows:

.venv\Scripts\activate.bat









An IDE like VSCode should automatically catch that a new virtual env was created.

Install the emhass package in editable mode:

python3 -m pip install -e .





Set paths with environment variables:


	Linux

export OPTIONS_PATH="${PWD}/options.json" && export USE_OPTIONS="True" ##optional to test options.json
export CONFIG_PATH="${PWD}/config_emhass.yaml"
export SECRETS_PATH="${PWD}/secrets_emhass.yaml"
export DATA_PATH="${PWD}/data/"







	windows

set "OPTIONS_PATH=%cd%/options.json"  & ::  optional to test options.json
set "USE_OPTIONS=True"                & ::  optional to test options.json
set "CONFIG_PATH=%cd%/config_emhass.yaml"
set "SECRETS_PATH=%cd%/secrets_emhass.yaml"
set "DATA_PATH=%cd%/data/"









Make sure secrets_emhass.yaml has been created and set. Copy secrets_emhass(example).yaml for an example.

Run EMHASS

python3 src/emhass/web_server.py





Run unitests

python3 -m unitest -v -RP -s ./tests -p 'test_*.py'





unitest will need to be installed prior



Method 2: VS-Code Debug and Run via DevContainer

In VS-Code, you can run a Docker DevContainer to set up a virtual environment. There you can edit and test EMHASS.

The recommended steps to run are:


	Open forked root (emhass) folder inside of VS-Code


	VS-Code will ask if you want to run in a dev-container, say yes (Dev Container [https://code.visualstudio.com/docs/devcontainers/containers] must be set up first). (Shortcut: F1 > Dev Containers: Rebuild and Reopen in Container)


	Edit some code…


	Compile emhass by pressing control+shift+p > Tasks: Run Task > EMHASS Install.
This has been set up in the tasks.json [https://github.com/davidusb-geek/emhass/blob/master/.vscode/tasks.json] file. - Before run & debug, re-run EMHASS Install task every time a change has been made to emhass.


	Launch and debug the application via selecting the Run and Debug [https://code.visualstudio.com/docs/editor/debugging] tab /Ctrl+Shift+D > EMHASS run Addon. This has been set up in the Launch.json [https://github.com/davidusb-geek/emhass/blob/master/.vscode/launch.json] .


	You will need to modify the EMHASS_URL (http://HAIPHERE:8123/) and EMHASS_KEY (PLACEKEYHERE) inside of Launch.json that matches your HA environment before running.


	If you want to change your parameters, you can edit options.json file before launch.


	you can also choose to run EMHASS run instead of EMHASS run Addon. This acts more like standalone mode an removes the use of options.json. (user sets parameters in config_emhass.yaml instead)






	You can run all the unitests by heading to the Testing [https://code.visualstudio.com/docs/python/testing] tab on the left hand side.

This is recommended before creating a pull request.






Method 3 - Docker Virtual Environment

With Docker, you can test EMHASS in both standalone and add-on mode via modifying the build argument: build_version with values: standalone, addon-pip, addon-git, addon-local.

Since emhass-add-on is using the same docker base, this method is good to test the add-on functionality of your code. (addon-local)

Depending on your choice of running standalone or addon, docker run will require different passed variables/arguments to function. See following examples:

Note: Make sure your terminal is in the root emhass directory before running the docker build.


Docker run add-on via with local files:

addon-local copies the local emhass files (from your device) to compile and run in addon mode.

docker build -t emhass/docker --build-arg build_version=addon-local .

docker run -it -p 5000:5000 --name emhass-container -e LAT="45.83" -e LON="6.86" -e ALT="4807.8" -e TIME_ZONE="Europe/Paris" emhass/docker --url YOURHAURLHERE --key YOURHAKEYHERE





Note:


	addon mode can have secret parameters passed in at run via variables -e, arguments (--key,--url) or via secrets_emhass.yaml with a volume mount


	on file change, you will need to re-build and re-run the Docker image/container in order for the change to take effect. (excluding volume mounted configs)


	if you are planning to modify the configs: options.json, secrets_emhass.yaml or config_emhass.yaml, you can volume mount them with -v:

docker build -t emhass/docker --build-arg build_version=addon-local .

docker run -it -p 5000:5000 --name emhass-container -v $(pwd)/options.json:/app/options.json -e LAT="45.83" -e LON="6.86" -e ALT="4807.8" -e TIME_ZONE="Europe/Paris" emhass/docker --url YOURHAURLHERE --key YOURHAKEYHERE





This allows the editing of config files without re-building the Docker Image. On config change, restart the container to take effect:

docker stop emhass-container

docker start emhass-container











Docker run Standalone with local files:

standalone copies the local emhass files (from your device) to compile and run in standalone mode.

docker build -t emhass/docker --build-arg build_version=standalone .

docker run -it -p 5000:5000 --name emhass-container -v $(pwd)/config_emhass.yaml:/app/config_emhass.yaml -v $(pwd)/secrets_emhass.yaml:/app/secrets_emhass.yaml emhass/docker





Standalone mode can use secrets_emhass.yaml to pass secret parameters (overriding secrets provided by ARG/ENV’s). Copy secrets_emhass(example).yaml for an example.



Docker run add-on with Git or pip:

If you would like to test with the current production/master versions of emhass, you can do so via pip or Git. With Git, you can also specify other repos/branches outside of davidusb-geek/emhass:master.

addon-pip will be the closest environment to the production emhass-add-on.

However, both come with the disadvantage of not easily being able to edit the emhass package itself.

Docker run add-on git

docker build -t emhass/docker --build-arg build_version=addon-git .

docker run -it -p 5000:5000 --name emhass-container -e LAT="45.83" -e LON="6.86" -e ALT="4807.8" -e TIME_ZONE="Europe/Paris" -v $(pwd)/options.json:/app/options.json emhass/docker --url YOURHAURLHERE --key YOURHAKEYHERE





To test a repo and branch outside of davidusb-geek/emhass:master:
(Utilizing build args build_repo and build_branch)

Linux:

repo=https://github.com/davidusb-geek/emhass.git
branch=master

docker build -t emhass/docker --build-arg build_version=addon-git --build-arg build_repo=$repo --build-arg build_branch=$branch .

docker run -it -p 5000:5000 --name emhass-container -e LAT="45.83" -e LON="6.86" -e ALT="4807.8" -e TIME_ZONE="Europe/Paris" -v $(pwd)/options.json:/app/options.json emhass/docker --url YOURHAURLHERE --key YOURHAKEYHERE





Docker run add-on pip:

docker build -t emhass/docker --build-arg build_version=addon-pip .

docker run -it -p 5000:5000 --name emhass-container -e LAT="45.83" -e LON="6.86" -e ALT="4807.8" -e TIME_ZONE="Europe/Paris" -v $(pwd)/options.json:/app/options.json emhass/docker --url YOURHAURLHERE --key YOURHAKEYHERE





To build with specific pip version, set with build arg: build_pip_version:

docker build -t emhass/docker --build-arg build_version=addon-pip --build-arg build_pip_version='==0.7.7' .

docker run -it -p 5000:5000 --name emhass-container -e LAT="45.83" -e LON="6.86" -e ALT="4807.8" -e TIME_ZONE="Europe/Paris" -v $(pwd)/options.json:/app/options.json emhass/docker --url YOURHAURLHERE --key YOURHAKEYHERE
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