
emhass
Release 0.1.0

David HERNANDEZ

Nov 19, 2021

CONTENTS:

1 Introduction 3
1.1 Installation . 3
1.2 Usage . 4
1.3 Home Assistant integration . 4

2 An EMS based on Linear Programming 7
2.1 Motivation . 7
2.2 Linear programming . 8
2.3 Household EMS with LP . 8
2.4 References . 10

3 A real study case 11

4 Configuration file 15
4.1 Retrieve HASS data configuration . 15
4.2 Optimization configuration parameters . 16
4.3 System configuration parameters . 17

5 API Reference 19
5.1 emhass.command_line module . 19
5.2 emhass.forecast module . 20
5.3 emhass.optimization module . 21
5.4 emhass.retrieve_hass module . 22
5.5 emhass.utils module . 24

6 Indices and tables 25

Python Module Index 27

Index 29

i

ii

emhass, Release 0.1.0

Welcome to the documentation of EMHASS. With this package written in Python you will be able to implement a real
Energy Management System for your household. This software was designed to be easy configurable and with a fast
integration with Home Assistant: https://www.home-assistant.io/

To get started go ahead and look at the installation procedure and usage instructions below.

CONTENTS: 1

https://www.home-assistant.io/

emhass, Release 0.1.0

2 CONTENTS:

CHAPTER

ONE

INTRODUCTION

This module was conceived as an energy management optimization tool for residential electric power consumption
and production systems. The goal is to optimize the energy use in order to maximize self-consumption. The main
study case is a household where we have solar panels, a grid connection and one or more controllable (deferrable)
electrical loads. Including an energy storage system using batteries is also possible in the code. The package is highly
configurable with an object oriented modular approach and a main configuration file defined by the user. EMHASS
was designed to be integrated with Home Assistant, hence it’s name. Installation instructions and example Home
Assistant automation configurations are given below.

The main dependencies of this project are PVLib to model power from a PV residential installation and the PuLP
Python package to perform the actual optimizations using the Linear Programming approach.

The source code for this package is available here.

1.1 Installation

It is recommended to install on a virtual environment. For this you will need virtualenv, install it using:

sudo apt install python3-virtualenv

Then create and activate the virtual environment:

virtualenv -p /usr/bin/python3 emhassenv
cd emhassenv
source bin/activate

Install using the distribution files:

python3 -m pip install emhass

Clone this repository to obtain the example configuration files. We will suppose that this repository is cloned to:

/home/user/emhass

This will be the root path containing the yaml configuration files (config.yaml and secrets.yaml) and the
different needed folders (a data folder to store the optimizations results and a scripts folder containing the bash
scripts described further below).

To upgrade the installation in the future just use:

python3 -m pip install --upgrade emhass

3

https://github.com/davidusb-geek/emhass

emhass, Release 0.1.0

1.2 Usage

To run a command simply use the emhass command followed by the needed arguments. The available arguments
are:

• --action: That is used to set the desired action, options are: perfect-optim, dayahead-optim and
publish-data

• --config: Define path to the config.yaml file

• --costfun: Define the type of cost function, options are: profit, cost, self-consumption

For example, the following line command can be used to perform a day-ahead optimization task:

emhass --action 'dayahead-optim' --config '/home/user/emhass' --costfun 'profit'

Before running any valuable command you need to modify the config.yaml and secrets.yaml files. These
files should contain the information adapted to your own system. To do this take a look at the special section for this
in the documentation.

1.3 Home Assistant integration

To integrate with home assistant we will need to define some shell commands in the configuration.yaml file
and some basic automations in the automations.yaml file.

In configuration.yaml:

shell_command:
dayahead_optim: /home/user/emhass/scripts/dayahead_optim.sh
publish_data: /home/user/emhass/scripts/publish_data.sh

And in automations.yaml:

- alias: EMHASS day-ahead optimization
trigger:
platform: time
at: '05:30:00'

action:
- service: shell_command.dayahead_optim

- alias: EMHASS publish data
trigger:
- minutes: /5
platform: time_pattern

action:
- service: shell_command.publish_data

In these automations the optimization is performed everyday at 5:30am and the data is published every 5 minutes.
Create the file dayahead_optim.sh with the following content:

#!/bin/bash
. /home/user/emhassenv/bin/activate
emhass --action 'dayahead-optim' --config '/home/user/emhass'

And the file publish_data.sh with the following content:

4 Chapter 1. Introduction

https://emhass.readthedocs.io/en/latest/config.html

emhass, Release 0.1.0

#!/bin/bash
. /home/user/emhassenv/bin/activate
emhass --action 'publish-data' --config '/home/user/emhass'

Then specify user rights and make the files executables:

sudo chmod -R 755 /home/user/emhass/scripts/dayahead_optim.sh
sudo chmod -R 755 /home/user/emhass/scripts/publish_data.sh
sudo chmod +x /home/user/emhass/scripts/dayahead_optim.sh
sudo chmod +x /home/user/emhass/scripts/publish_data.sh

The final action will be to link a sensor value in Home Assistant to control the switch of a desired controllable load.
For example imagine that I want to control my water heater and that the publish-data action is publishing the
optimized value of a deferrable load that I have linked to my water heater desired behavior. In this case we could use
an automation like this one below to control the desired real switch:

automation:
trigger:
- platform: numeric_state

entity_id:
- sensor.p_deferrable1

above: 0.1
action:
- service: homeassistant.turn_on

entity_id: switch.water_heater

A second automation should be used to turn off the switch:

automation:
trigger:
- platform: numeric_state

entity_id:
- sensor.p_deferrable1

below: 0.1
action:
- service: homeassistant.turn_off

entity_id: switch.water_heater

1.3. Home Assistant integration 5

emhass, Release 0.1.0

6 Chapter 1. Introduction

CHAPTER

TWO

AN EMS BASED ON LINEAR PROGRAMMING

In this section we present the basics of the Linear Programming (LP) approach for a household Energy Management
System (EMS).

2.1 Motivation

Imagine that we have installed some solar panels in our house. Imagine that we have Home Assistant and that we
can control (on/off) some crucial power consumptions in our home. For example the water heater, the pool pump, a
dispatchable dishwasher, and so on. We can also imagine that we have installed a battery like a PowerWall, in order to
maximize the PV self-consumption. With Home Assistant we also have sensors that can measure the power produced
by our PV plant, the global power consumption of the house and hopefully the power consumed by the controllable
loads. Home Assistant has released the Energy Dashboard where we can viusalize all these variables in somme really
good looking graphics. See: https://www.home-assistant.io/blog/2021/08/04/home-energy-management/

Now, how can we be certain of the good and optimal management of these devices? If we define a fixed schedule for
our deferrable loads, is this the best solution? When we can indicate or force a charge or discharge on the battery?
This is a well known academic problem for an Energy Management System.

The first and most basic approach could be to define some basic rules or heuristics, this is the so called rule-based
approach. The rules could be some fixed schedules for the deferrable loads, or some threshold based triggering of the
battery charge/discharge, and so on. The rule-based approach has the advantage of being simple to implement and
robust. However, the main disadvantage is that optimality is not guaranteed.

The goal of this work is to provide an easy to implement framework where anyone using Home Assistant can apply the
best and optimal set of instructions to control the energy flow in a household. There are many ways and techniques that
can be found in the literature to implement optimized EMS. In this package we are using just one of those techniques,
the Linear Programming approach, that will be presented below.

When I was designing and testing this package in my own house I estimated a daily gain between 5% and 8% when
using the optimized approach versus a rule-based one. In my house I have a 5 kWp PV installation with a contractual
grid supply of 9 kVA. I have a grid contract with two tariffs for power consumption for the grid (peak and non-peak
hours) and one tariff for the excess PV energy injected to the grid. I have no battery installed, but I suppose that
the margin of gain would be even bigger with a battery, adding flexibility to the energy management. Of course the
disadvantage is the initial capital cost of the battery stack. In my case the gain comes from the fact that the EMS is
helping me to decide when to turn on my water heater and the pool pump. If we have a good clear sky day the results
of the optimization will normally be to turn them on during the day where solar production is present. But if the day
is going to be really clouded, then is possible that the best solution will be to turn them on during the non-peak tariff
hours, for my case this is during the night from 9pm to 2am. All these decisions are made automatically by the EMS
using forecasts of both the PV production and the house power consumption.

Some other good packages and projects offer similar approaches to EMHASS. I can cite for example the good work
done by my friends at the G2ELab in Grenoble, France. They have implemented the OMEGAlpes package that can
also be used as an optimized EMS using LP and MILP (see: https://gricad-gitlab.univ-grenoble-alpes.fr/omegalpes/

7

https://www.home-assistant.io/blog/2021/08/04/home-energy-management/
https://gricad-gitlab.univ-grenoble-alpes.fr/omegalpes/omegalpes
https://gricad-gitlab.univ-grenoble-alpes.fr/omegalpes/omegalpes

emhass, Release 0.1.0

omegalpes). But here in EMHASS the first goal was to keep it simple to implement using configuration files and the
second goal was that it should be easy to integrate to Home Assistant. I am sure that there will be a lot of room for
optimize the code and the package implementation as this solution will be used and tested in the future.

I have included a list of scientific references at the bottom if you want to deep into the technical aspects of this subject.

Ok, let’s start by a resumed presentation of the LP approach.

2.2 Linear programming

Linear programming is an optimization method that can be used to obtain the best solution from a given cost function
using a linear modeling of a problem. Typically we can also also add linear constraints to the optimization problem.

This can be mathematically written as:

Maximize
𝑥

cTx

subject to
𝐴x ≤ b

and
x ≥ 0

with x the variable vector that we want to find, c and b are vectors with known coefficients and A is a matrix with
known values. Here the cost function is defined by cTx. The inequalities 𝐴x ≤ b and x ≥ 0 represent the convex
region of feasible solutions.

We could find a mix of real and integer variables in x, in this case the problem is referred as Mixed Integer Linear
Programming (MILP). Typically this kind of problem use the branch and boud type of solvers or similars.

The LP has of course its set of advantages and disadvantages. The main advantage is the that if the problem is well
posed and the region of feasible possible solutions is convex, then a solution is guaranteed and solving times are
usually fast when compared to other optimization techniques (as dynamic programming for example). However we
can easily fall into memory issues, larger solving times and convergence problems if the size of the problem is too
high (too many equations).

2.3 Household EMS with LP

The LP problem for the household EMS is solved in EMHASS using different user-chosen cost functions.

Three main cost functions are proposed.

2.3.1 Cost functions

The profit cost function:

In this case the cost function is posed to maximize the profit. In this case this is defined by the revenues from selling PV
power to the grid minus the consummed energy cost. This can be represented with the following obtective function:

Δ𝑜𝑝𝑡/Δ𝑡∑︁
𝑖=1

−0.001 * ∆𝑡(𝑢𝑛𝑖𝑡𝐿𝑜𝑎𝑑𝐶𝑜𝑠𝑡[𝑖] * (𝑃𝑙𝑜𝑎𝑑[𝑖] + 𝑃𝑑𝑒𝑓𝑆𝑢𝑚[𝑖]) + 𝑝𝑟𝑜𝑑𝑆𝑒𝑙𝑙𝑃𝑟𝑖𝑐𝑒 * 𝑃𝑔𝑟𝑖𝑑𝑁𝑒𝑔[𝑖])

where ∆𝑜𝑝𝑡 is the total period of optimization in hours, ∆𝑡 is the optimization time step in hours, 𝑢𝑛𝑖𝑡𝐿𝑜𝑎𝑑𝐶𝑜𝑠𝑡𝑖 is the
cost of the energy from the utility in EUR/kWh, 𝑃𝑙𝑜𝑎𝑑 is the electricity load consumption (positive defined), 𝑃𝑑𝑒𝑓𝑆𝑢𝑚

8 Chapter 2. An EMS based on Linear Programming

https://gricad-gitlab.univ-grenoble-alpes.fr/omegalpes/omegalpes
https://gricad-gitlab.univ-grenoble-alpes.fr/omegalpes/omegalpes

emhass, Release 0.1.0

is the sum of the deferrable loads defined, 𝑝𝑟𝑜𝑑𝑆𝑒𝑙𝑙𝑃𝑟𝑖𝑐𝑒 is the price of the energy sold to the utility, 𝑃𝑔𝑟𝑖𝑑𝑁𝑒𝑔 is the
negative component of the grid power, this is the power exported to the grid. All these power are expressed in Watts.

The energy from the grid cost:

In this case the cost function is computed as the cost of the energy comming from the grid. This is:

Δ𝑜𝑝𝑡/Δ𝑡∑︁
𝑖=1

−0.001 * ∆𝑡𝑢𝑛𝑖𝑡𝐿𝑜𝑎𝑑𝐶𝑜𝑠𝑡[𝑖] * (𝑃𝑙𝑜𝑎𝑑[𝑖] + 𝑃𝑑𝑒𝑓𝑆𝑢𝑚[𝑖])

The self-consumption cost function:

This is a cost function designed to maximize the self-consumption of the PV plant. The self-consumption is defined
as:

𝑆𝐶 = min(𝑃𝑃𝑉 , (𝑃𝑙𝑜𝑎𝑑 + 𝑃𝑑𝑒𝑓𝑆𝑢𝑚))

To convert this to a linear cost function, an additional continuous variable 𝑆𝐶 is added. This is the so-called maximin
problem. The cost function is defined as:

Δ𝑜𝑝𝑡/Δ𝑡∑︁
𝑖=1

𝑆𝐶[𝑖]

With the following set of constraints:

𝑆𝐶[𝑖] ≤ 𝑃𝑃𝑉 [𝑖]

and

𝑆𝐶[𝑖] ≤ 𝑃𝑙𝑜𝑎𝑑[𝑖] + 𝑃𝑑𝑒𝑓𝑆𝑢𝑚[𝑖]

All these cost functions can be chosen by the user with the --costfun tag with the emhass command. The options
are: profit, cost, self-consumption. They are all set in the LP formualtion as cost function to maximize.

The problem constraints are written as follows.

2.3.2 The main constraint: power balance

𝑃𝑃𝑉𝑖
− 𝑃𝑑𝑒𝑓𝑆𝑢𝑚𝑖

− 𝑃𝑙𝑜𝑎𝑑𝑖
+ 𝑃𝑔𝑟𝑖𝑑𝑁𝑒𝑔𝑖 + 𝑃𝑔𝑟𝑖𝑑𝑃𝑜𝑠𝑖 + 𝑃𝑠𝑡𝑜𝑃𝑜𝑠𝑖 + 𝑃𝑠𝑡𝑜𝑁𝑒𝑔𝑖 = 0

with 𝑃𝑃𝑉 the PV power production, 𝑃𝑔𝑟𝑖𝑑𝑃𝑜𝑠 the positive component of the grid power (from grid to household),
𝑃𝑠𝑡𝑜𝑃𝑜𝑠 and 𝑃𝑠𝑡𝑜𝑁𝑒𝑔 are the positive (discharge) and negative components of the battery power (charge).

Normally the PV power production and the electricity load consumption are considered known. In the case of a day-
ahead optimization these should be forecasted values. When the optimization problem is solved the others power
defining the power flow are found as a result: the deferrable load power, the grid power and the battery power.

2.3.3 Other constraints

Some other special linear constraints are defined. A constraint is introduced to avoid injecting and consuming from
grid at the same time, which is physically impossible. Other constraints are used to control the total time that a
deferrable load will stay on and the number of start-ups.

Constraints are also used to define semi-continuous variables. Semi-continuous variables are variables that must take
a value between their minimum and maximum or zero.

A final set of constraints is used to define the behavior of the battery. Notably:

2.3. Household EMS with LP 9

emhass, Release 0.1.0

• Ensure that maximum charge and discharge powers are not exceeded.

• Minimum and maximum state of charge values are not exceeded.

• Force the final state of charge value to be equal to the initial state of charge.

2.3.4 Perfect forecast optimization

This is the first of two type of optimization task that are proposed with this package. In this case the main inputs, the
PV power production and the house power consumption, are fixed using historical values from the past. This mean
that in some way we are optimizing a system with a perfect knowledge of the future. This optimization is of course
non-practical in real life. However this can be give us the best possible solution of the optimization problem that can
be later used as a reference for comparison purposes.

2.3.5 Day-ahead optimization

In this second type of optimization task the PV power production and the house power consumption are forecasted
values. This is the action that should be performed in a real case scenario and is the case that should be launched from
Home Assistant to obtain an optimized energy management of future actions.

As the optimization is bounded to forecasted values, it will also be bounded to uncertainty. The quality and accuracy
of the optimization results will be inevitably linked to the quality of the forecast used for these values. The better the
forecast error, the better accuracy of the optimization result.

We are now ready to configure our system using the proposed configuration file and link our package to Home Assis-
tant!

2.4 References

• Camille Pajot, Lou Morriet, Sacha Hodencq, Vincent Reinbold, Benoit Delinchant, Frédéric Wurtz, Yves
Maréchal, Omegalpes: An Optimization Modeler as an EfficientTool for Design and Operation for City Energy
Stakeholders and Decision Makers, BS’15, Building Simulation Conference, Roma in September 24, 2019.

• Gabriele Comodi, Andrea Giantomassi, Marco Severini, Stefano Squartini, Francesco Ferracuti, Alessandro
Fonti, Davide Nardi Cesarini, Matteo Morodo, and Fabio Polonara. Multi-apartment residential microgrid with
electrical and thermal storage devices: Experimental analysis and simulation of energy management strategies.
Applied Energy, 137:854–866, January 2015.

• Pedro P. Vergara, Juan Camilo López, Luiz C.P. da Silva, and Marcos J. Rider. Security-constrained optimal en-
ergy management system for threephase residential microgrids. Electric Power Systems Research, 146:371–382,
May 2017.

• R. Bourbon, S.U. Ngueveu, X. Roboam, B. Sareni, C. Turpin, and D. Hernandez-Torres. Energy management
optimization of a smart wind power plant comparing heuristic and linear programming methods. Mathematics
and Computers in Simulation, 158:418–431, April 2019.

10 Chapter 2. An EMS based on Linear Programming

CHAPTER

THREE

A REAL STUDY CASE

In this section a study case is presented.

For this example a 5 kWp solar production is considered with two deferrable loads. No battery is considered. The
configuration used is the default configuration proposed with EMHASS. We will use 7-day historical data for this
optimization.

We compare the results obtained with the perfect optimization using the following command:

emhass --action 'perfect-optim' --config '/home/user/emhass' --costfun 'profit'

The --costfun is compared with all the possible options: profit, cost, self-consumption.

The obtained results are presented below. These results shows different behaviors of the optimization algorithm
depending on the cost function.

11

emhass, Release 0.1.0

12 Chapter 3. A real study case

emhass, Release 0.1.0

In this particular case, for comparison purposes, we compute the profit value for each cost function. The results are
presented below:

We can see that for this particular case, the profit cost function is the most interesting if we focus on maximizing profit.
However this can differ depending on your specific usage of your PV production. In some cases it could be interesting
to maximize self-consumption, for example in off-grid applications.

The real implementation of EMHASS and its efficiency depends on the quality of the forecasted PV power production
and the house load consumption.

Here is an extract of the PV power production forecast with the default PV forecast method from EMHASS: a web
scarpping of the clearoutside page based on the defined lat/lon location of the system. These are the forecast results of
the GFS model.

13

emhass, Release 0.1.0

14 Chapter 3. A real study case

CHAPTER

FOUR

CONFIGURATION FILE

In this section we will explain all the parts of the config.yaml needed to properly run EMHASS.

We will find three main parts on the configuration file:

• The parameters needed to retrieve data from Home Assistant (retrieve_hass_conf)

• The parameters to define the optimization problem (optim_conf)

• The parameters used to model the system (plant_conf)

4.1 Retrieve HASS data configuration

These are the parameters that we will need to define to retrieve data from Home Assistant. There are no optional
parameters. In the case of a list, an empty list is a valid entry.

• freq: The time step to resample retrieved data from hass. This parameter is given in minutes. It should not be
defined too low or you will run into memory problems when defining the Linear Programming optimization.
Defaults to 30.

• days_to_retrieve: We will retrieve data from now and up to days_to_retrieve days. Defaults to 2.

• var_PV: This is the name of the photovoltaic produced power sensor in Watts from Home Assistant. For exam-
ple: ‘sensor.power_photovoltaics’.

• var_load: The name of the household power consumption sensor in Watts from Home Assistant. The deferrable
loads that we will want to include in the optimization problem should be substracted from this sensor in HASS.
For example: ‘sensor.power_load_no_var_loads’

• load_negative: Set this parameter to True if the retrived load variable is negative by convention. Defaults to
False.

• set_zero_min: Set this parameter to True to give a special treatment for a minimum value saturation to zero for
power consumption data. Values below zero are replaced by nans. Defaults to True.

• var_replace_zero: The list of retrieved variables that we would want to replace nans (if they exist) with zeros.
For example:

– ‘sensor.power_photovoltaics’

• var_interp: The list of retrieved variables that we would want to interpolate nans values using linear interpola-
tion. For example:

– ‘sensor.power_photovoltaics’

– ‘sensor.power_load_no_var_loads’

15

emhass, Release 0.1.0

A second part of this section is given by some privacy-sensitive parameters that should be included in a secrets.
yaml file alongside the config.yaml file.

The parameters in the secrets.yaml file are:

• hass_url: The URL to your Home Assistant instance. For example: https://myhass.duckdns.org/

• long_lived_token: A Long-Lived Access Token from the Lovelace profile page.

• time_zone: The time zone of your system. For example: Europe/Paris.

• lat: The latitude. For example: 45.0.

• lon: The longitude. For example: 6.0

• alt: The altitude in meters. For example: 100.0

4.2 Optimization configuration parameters

These are the parameters needed to properly define the optimization problem.

• num_def_loads: Define the number of deferrable loads to consider. Defaults to 2.

• P_deferrable_nom: The nominal power for each deferrable load in Watts. This is a list with a number of elements
consistent with the number of deferrable loads defined before. For example:

– 3000

– 750

• def_total_hours: The total number of hours that each deferrable load should operate. For example:

– 5

– 8

• treat_def_as_semi_cont: Define if we should treat each deferrable load as a semi-continuous variable. Semi-
continuous variables are variables that must take a value between their minimum and maximum or zero. For
example:

– True

– True

• set_def_constant: Define if we should set each deferrable load as a constant fixed value variable with just one
startup for each optimization task. For example:

– False

– False

• list_hp_periods: Define a list of peak hour periods for load consumption from the grid. This is useful if you
have a contract with peak and non-peak hours. For example for two peak hour periods:

– period_hp_1:

* start: ‘02:54’

* end: ‘15:24’

– period_hp_2:

* start: ‘17:24’

* end: ‘20:24’

16 Chapter 4. Configuration file

emhass, Release 0.1.0

• load_cost_hp: The cost of the electrical energy from the grid during peak hours in C/kWh. Defaults to 0.1464.

• load_cost_hc: The cost of the electrical energy from the grid during non-peak hours in C/kWh. Defaults to
0.096359.

• prod_sell_price: The paid price for energy injected to the grid from excedent PV production in C/kWh. Defaults
to 0.065.

• set_use_battery: Set to True if we should consider an energy storage device such as a Li-Ion battery. Defaults
to False.

• delta_forecast: The number of days for forecasted data. Defaults to 1.

4.3 System configuration parameters

These are the technical parameters of the energy system of the household.

• P_grid_max: The maximum power that can be supplied by the utility grid in Watts. Defaults to 9000.

We will define the technical parameters of the PV installation. For the modeling task we rely on the PVLib
Python package. For more information see: https://pvlib-python.readthedocs.io/en/stable/ The complete list of sup-
ported modules and inverter models can be found here: https://pvlib-python.readthedocs.io/en/stable/generated/pvlib.
pvsystem.retrieve_sam.html

• module_model: The PV module model. For example: ‘CSUN_Eurasia_Energy_Systems_Industry_and_Trade_CSUN295_60M’

• inverter_model: The PV inverter model. For example: ‘Fronius_International_GmbH__Fronius_Primo_5_0_1_208_240__240V_’

• surface_tilt: The tilt angle of your solar panels. Defaults to 30.

• surface_azimuth: The azimuth of your PV installation. Defaults to 205.

• modules_per_string: The number of modules per string. Defaults to 16.

• strings_per_inverter: The number of used strings per inverter. Defaults to 1.

If your system has a battery (set_use_battery=True), then you should define the following parameters:

• Pd_max: The maximum discharge power in Watts. Defaults to 1000.

• Pc_max: The maximum charge power in Watts. Defaults to 1000.

• eta_disch: The discharge efficiency. Defaults to 0.95.

• eta_ch: The charge efficiency. Defaults to 0.95.

• Enom: The total capacity of the battery stack in Wh. Defaults to 5000.

• SOCmin: The minimun allowable battery state of charge. Defaults to 0.3.

• SOCmax: The minimun allowable battery state of charge. Defaults to 0.9.

• SOCtarget: The desired battery state of charge at the end of each optimization cycle. Defaults to 0.6.

4.3. System configuration parameters 17

https://pvlib-python.readthedocs.io/en/stable/
https://pvlib-python.readthedocs.io/en/stable/generated/pvlib.pvsystem.retrieve_sam.html
https://pvlib-python.readthedocs.io/en/stable/generated/pvlib.pvsystem.retrieve_sam.html

emhass, Release 0.1.0

18 Chapter 4. Configuration file

CHAPTER

FIVE

API REFERENCE

5.1 emhass.command_line module

emhass.command_line.dayahead_forecast_optim(input_data_dict, logger)
Perform a call to the day-ahead optimization routine.

Parameters

• input_data_dict (dict) – A dictionnary with multiple data used by the action func-
tions

• logger (logging object) – The passed logger object

Returns The output data of the optimization

Return type pd.DataFrame

emhass.command_line.main()
Define the main command line entry function.

emhass.command_line.perfect_forecast_optim(input_data_dict, logger)
Perform a call to the perfect forecast optimization routine.

Parameters

• input_data_dict (dict) – A dictionnary with multiple data used by the action func-
tions

• logger (logging object) – The passed logger object

Returns The output data of the optimization

Return type pd.DataFrame

emhass.command_line.publish_data(input_data_dict, logger)
Publish the data obtained from the optimization results.

Parameters

• input_data_dict (dict) – A dictionnary with multiple data used by the action func-
tions

• logger (logging object) – The passed logger object

Returns The output data of the optimization readed from a CSV file in the data folder

Return type pd.DataFrame

emhass.command_line.setUp(config_path, costfun, logger)
Set up some of the data needed for the different actions.

19

emhass, Release 0.1.0

Parameters

• config_path (str) – The absolute path where the config.yaml file is located

• costfun (str) – The type of cost function to use for optimization problem

• logger (logging object) – The passed logger object

Returns A dictionnary with multiple data used by the action functions

Return type dict

5.2 emhass.forecast module

class emhass.forecast.forecast(retrieve_hass_conf: dict, optim_conf: dict, plant_conf: dict,
config_path: str, logger: logging.Logger, opt_time_delta: Op-
tional[int] = 24)

Bases: object

Generate weather and load forecasts needed as inputs to the optimization.

The weather forecast is obtained from two methods. In the first method the tools proposed in the PVLib package
are use to retrieve data from the GFS global model. However this API proposed by PVLib is highly experimental
and prone to changes. A second method uses a scrapper to the ClearOutside webpage which proposes detailed
forecasts based on Lat/Lon locations. This methods seems quite stable but as any scrape method it will fail if
any changes are made to the webpage API.

The ‘get_power_from_weather’ method is proposed here to convert from irradiance data to electrical power.
Again PVLib is used to model the PV plant. For the load forecast two methods are available.

The first method allows the user to use a CSV file with their own forecast. With this method a more powerful
external package for time series forecast may be used to create your own detailed load forecast.

The CSV should contain no header and the timestamped data should have the following format:

2021-04-29 00:00:00+00:00,287.07

2021-04-29 00:30:00+00:00,274.27

2021-04-29 01:00:00+00:00,243.38

. . .

The second method is a naive method, also called persistance. It simply assumes that the forecast for a future
period will be equal to the observed values in a past period. The past period is controlled using parameter
‘delta_forecast’.

get_load_forecast(days_min_load_forecast: Optional[int] = 3, method: Optional[str] =
'naive', csv_path: Optional[str] = '/data/data_load_forecast.csv') → pan-
das.core.series.Series

Get and generate the load forecast data.

Parameters

• days_min_load_forecast (int, optional) – The number of last days to re-
trieve that will be used to generate a naive forecast, defaults to 3

• method (str, optional) – The method to be used to generate load forecast, the
options are ‘csv’ to load a CSV file or ‘naive’ for a persistance model, defaults to ‘naive’

• csv_path (str, optional) – The path to the CSV file used when method = ‘csv’,
defaults to “/data/data_load_forecast.csv”

20 Chapter 5. API Reference

emhass, Release 0.1.0

Returns The DataFrame containing the electrical load power in Watts

Return type pd.DataFrame

get_power_from_weather(df_weather: pandas.core.frame.DataFrame) → pan-
das.core.series.Series

Convert wheater forecast data into electrical power.

Parameters df_weather (pd.DataFrame) – The DataFrame containing the weather fore-
casted data. This DF should be generated by the ‘get_weather_forecast’ method or at least
contain the same columns names filled with proper data.

Returns The DataFrame containing the electrical power in Watts

Return type pd.DataFrame

get_weather_forecast(method: Optional[str] = 'scrapper')→ pandas.core.frame.DataFrame
Get and generate weather forecast data.

Parameters method (str, optional) – The desired method, options are ‘scrapper’ and
‘pvlib’, defaults to ‘scrapper’

Returns The DataFrame containing the forecasted data

Return type pd.DataFrame

5.3 emhass.optimization module

class emhass.optimization.optimization(retrieve_hass_conf: dict, optim_conf:
dict, plant_conf: dict, days_list: pan-
das.core.indexes.datetimes.date_range, costfun:
str, config_path: str, logger: logging.Logger,
opt_time_delta: Optional[int] = 24)

Bases: object

Optimize the deferrable load and battery energy dispatch problem using the linear programming optimization
technique. All equipement equations, including the battery equations are hence transformed in a linear form.

This class methods are:

• get_load_unit_cost

• perform_optimization

• perform_perfect_forecast_optim

• perform_dayahead_forecast_optim

get_load_unit_cost(df_final: pandas.core.frame.DataFrame)→ pandas.core.frame.DataFrame
Get the unit cost for the load consumption based on multiple tariff periods. This is the cost of the energy
from the utility in a vector sampled at the fixed freq value.

Parameters df_input_data (pd.DataFrame) – The DataFrame containing all the input
data retrieved from hass

Returns The input DataFrame with one additionnal column appended containing the load cost
by unit of time

Return type pd.DataFrame

5.3. emhass.optimization module 21

emhass, Release 0.1.0

perform_dayahead_forecast_optim(df_input_data: pandas.core.frame.DataFrame,
P_PV: pandas.core.series.Series, P_load: pan-
das.core.series.Series)→ pandas.core.frame.DataFrame

Perform a day-ahead optimization task using real forecast data.

Parameters

• df_input_data (pandas.DataFrame) – A DataFrame containing all the input data
used for the optimization, notably the unit load cost for power consumption.

• P_PV (pandas.DataFrame) – The forecasted PV power production.

• P_load (pandas.DataFrame) – The forecasted Load power consumption. This
power should not include the power from the deferrable load that we want to find.

Returns opt_res: A DataFrame containing the optimization results

Return type pandas.DataFrame

perform_optimization(data_opt: pandas.core.frame.DataFrame, P_PV: numpy.array,
P_load: numpy.array, unit_load_cost: numpy.array) → pan-
das.core.frame.DataFrame

Perform the actual optimization using linear programming (LP).

Parameters

• data_tp (pd.DataFrame) – A DataFrame containing the input data. The results of
the optimization will be appended (decision variables, cost function values, etc)

• P_PV (numpy.array) – The photovoltaic power values. This can be real historical
values or forecasted values.

• P_load (np.array) – The load power consumption values

• unit_load_cost (np.array) – The cost of power consumption for each unit of time.
This is the cost of the energy from the utility in a vector sampled at the fixed freq value

Returns The input DataFrame with all the different results from the optimization appended

Return type pd.DataFrame

perform_perfect_forecast_optim(df_input_data: pandas.core.frame.DataFrame) → pan-
das.core.frame.DataFrame

Perform an optimization on historical data (perfectly known PV production).

Parameters df_input_data (pandas.DataFrame) – A DataFrame containing all the in-
put data used for the optimization, notably photovoltaics and load consumption powers.

Returns opt_res: A DataFrame containing the optimization results

Return type pandas.DataFrame

5.4 emhass.retrieve_hass module

class emhass.retrieve_hass.retrieve_hass(hass_url: str, long_lived_token: str, freq: pan-
das._libs.tslibs.timedeltas.Timedelta, time_zone:
datetime.timezone, config_path: str, logger: log-
ging.Logger)

Bases: object

Retrieve data from Home Assistant using the restful API.

22 Chapter 5. API Reference

emhass, Release 0.1.0

This class allows the user to retrieve data from a Home Assistant instance using the provided restful API (https:
//developers.home-assistant.io/docs/api/rest/)

This class methods are:

• get_data: to retrieve the actual data from hass

• prepare_data: to apply some data treatment in preparation for the optimization task

• post_data: Post passed data to hass

get_data(days_list: pandas.core.indexes.datetimes.date_range, var_list: list, minimal_response: Op-
tional[bool] = False, significant_changes_only: Optional[bool] = False)→ None

Retrieve the actual data from hass.

Parameters

• days_list (pandas.date_range) – A list of days to retrieve. The ISO format
should be used and the timezone is UTC. The frequency of the data_range should be
freq=’D’

• var_list (list) – The list of variables to retrive from hass. These should be the
exact name of the sensor in Home Assistant. For example: [‘sensor.home_load’, ‘sen-
sor.home_pv’]

• minimal_response (bool, optional) – Retrieve a minimal response using the
hass restful API, defaults to False

• significant_changes_only (bool, optional) – Retrieve significant changes
only using the hass restful API, defaults to False

Returns The DataFrame populated with the retrieved data from hass

Return type pandas.DataFrame

Warning: The minimal_response and significant_changes_only options are experimental

post_data(data_df: pandas.core.frame.DataFrame, idx: int, entity_id: str, unit_of_measurement: str,
friendly_name: str)→ None

Post passed data to hass.

Parameters

• data_df (pd.DataFrame) – The DataFrame containing the data that will be posted to
hass. This should be a one columns DF or a series.

• idx (int) – The int index of the location of the data within the passed DataFrame. We
will post just one value at a time.

• entity_id (str) – The unique entity_id of the sensor in hass.

• unit_of_measurement (str) – The units of the sensor.

• friendly_name (str) – The friendly name that will be used in the hass frontend.

prepare_data(var_load: str, load_negative: Optional[bool] = False, set_zero_min: Optional[bool]
= True, var_replace_zero: Optional[list] = None, var_interp: Optional[list] = None)
→ None

Apply some data treatment in preparation for the optimization task.

Parameters

• var_load (str) – The name of the variable for the household load consumption.

5.4. emhass.retrieve_hass module 23

https://developers.home-assistant.io/docs/api/rest/
https://developers.home-assistant.io/docs/api/rest/

emhass, Release 0.1.0

• load_negative (bool, optional) – Set to True if the retrived load variable is
negative by convention, defaults to False

• set_zero_min (bool, optional) – A special treatment for a minimum value sat-
uration to zero. Values below zero are replaced by nans, defaults to True

• var_replace_zero (list, optional) – A list of retrived variables that we would
want to replace nans with zeros, defaults to None

• var_interp (list, optional) – A list of retrived variables that we would want to
interpolate nan values using linear interpolation, defaults to None

Returns The DataFrame populated with the retrieved data from hass and after the data treatment

Return type pandas.DataFrame

5.5 emhass.utils module

emhass.utils.get_days_list(days_to_retrieve: int)→ pandas.core.indexes.datetimes.date_range
Get list of past days from today to days_to_retrieve.

Parameters days_to_retrieve (int) – Total number of days to retrieve from the past

Returns The list of days

Return type pd.date_range

emhass.utils.get_logger(fun_name: str, config_path: str, file: Optional[bool] = True) → Tu-
ple[logging.Logger, logging.StreamHandler]

Create a simple logger object.

Parameters

• fun_name (str) – The Python function object name where the logger will be used

• config_path (str) – The path to the yaml configuration file

• file (bool, optional) – Write log to a file, defaults to True

Returns The logger object and the handler

Return type object

emhass.utils.get_root()→ str
Get the root absolute path of the working directory.

Returns The root path

Return type str

emhass.utils.get_root_2pardir()→ str
Get the root absolute path of the working directory using two pardir commands.

Returns The root path

Return type str

emhass.utils.get_yaml_parse(config_path: str)→ Tuple[dict, dict, dict]
Perform parsing of the config.yaml file.

Parameters config_path (str) – The path to the yaml configuration file

Returns A tuple with the dictionaries containing the parsed data

Return type tuple(dict)

24 Chapter 5. API Reference

CHAPTER

SIX

INDICES AND TABLES

• genindex

• modindex

• search

25

emhass, Release 0.1.0

26 Chapter 6. Indices and tables

PYTHON MODULE INDEX

e
emhass.command_line, 19
emhass.forecast, 20
emhass.optimization, 21
emhass.retrieve_hass, 22
emhass.utils, 24

27

emhass, Release 0.1.0

28 Python Module Index

INDEX

D
dayahead_forecast_optim() (in module

emhass.command_line), 19

E
emhass.command_line

module, 19
emhass.forecast

module, 20
emhass.optimization

module, 21
emhass.retrieve_hass

module, 22
emhass.utils

module, 24

F
forecast (class in emhass.forecast), 20

G
get_data() (emhass.retrieve_hass.retrieve_hass

method), 23
get_days_list() (in module emhass.utils), 24
get_load_forecast() (emhass.forecast.forecast

method), 20
get_load_unit_cost()

(emhass.optimization.optimization method), 21
get_logger() (in module emhass.utils), 24
get_power_from_weather()

(emhass.forecast.forecast method), 21
get_root() (in module emhass.utils), 24
get_root_2pardir() (in module emhass.utils), 24
get_weather_forecast()

(emhass.forecast.forecast method), 21
get_yaml_parse() (in module emhass.utils), 24

M
main() (in module emhass.command_line), 19
module

emhass.command_line, 19
emhass.forecast, 20
emhass.optimization, 21

emhass.retrieve_hass, 22
emhass.utils, 24

O
optimization (class in emhass.optimization), 21

P
perfect_forecast_optim() (in module

emhass.command_line), 19
perform_dayahead_forecast_optim()

(emhass.optimization.optimization method), 21
perform_optimization()

(emhass.optimization.optimization method), 22
perform_perfect_forecast_optim()

(emhass.optimization.optimization method), 22
post_data() (emhass.retrieve_hass.retrieve_hass

method), 23
prepare_data() (emhass.retrieve_hass.retrieve_hass

method), 23
publish_data() (in module emhass.command_line),

19

R
retrieve_hass (class in emhass.retrieve_hass), 22

S
setUp() (in module emhass.command_line), 19

29

	Introduction
	Installation
	Usage
	Home Assistant integration

	An EMS based on Linear Programming
	Motivation
	Linear programming
	Household EMS with LP
	References

	A real study case
	Configuration file
	Retrieve HASS data configuration
	Optimization configuration parameters
	System configuration parameters

	API Reference
	emhass.command_line module
	emhass.forecast module
	emhass.optimization module
	emhass.retrieve_hass module
	emhass.utils module

	Indices and tables
	Python Module Index
	Index

