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Welcome to the documentation of EMHASS. With this package written in Python you will be able to implement a real
Energy Management System for your household. This software was designed to be easy configurable and with a fast
integration with Home Assistant: https://www.home-assistant.io/

To get started go ahead and look at the installation procedure and usage instructions below.

CONTENTS: 1
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CHAPTER

ONE

INTRO / QUICK START

EHMASS is a Python module designed to optimize your home energy interfacing with Home Assistant.

1.1 Introduction

EMHASS (Energy Management for Home Assistant) is an optimization tool designed for residential households. The
package uses a Linear Programming approach to optimize energy usage while considering factors such as electricity
prices, power generation from solar panels, and energy storage from batteries. EMHASS provides a high degree of
configurability, making it easy to integrate with Home Assistant and other smart home systems. Whether you have
solar panels, energy storage, or just a controllable load, EMHASS can provide an optimized daily schedule for your
devices, allowing you to save money and minimize your environmental impact.

The complete documentation for this package is available here.

1.2 What is Energy Management for Home Assistant (EMHASS)?

EMHASS and Home Assistant provide a comprehensive energy management solution that can optimize energy usage
and reduce costs for households. By integrating these two systems, households can take advantage of advanced energy
management features that provide significant cost savings, increased energy efficiency, and greater sustainability.

EMHASS is a powerful energy management tool that generates an optimization plan based on variables such as solar
power production, energy usage, and energy costs. The plan provides valuable insights into how energy can be better
managed and utilized in the household. Even if households do not have all the necessary equipment, such as solar panels
or batteries, EMHASS can still provide a minimal use case solution to optimize energy usage for controllable/deferrable
loads.

Home Assistant provides a platform for the automation of household devices based on the optimization plan generated
by EMHASS. This includes devices such as batteries, pool pumps, hot water heaters, and electric vehicle (EV) chargers.
By automating EV charging and other devices, households can take advantage of off-peak energy rates and optimize
their EV charging schedule based on the optimization plan generated by EMHASS.

One of the main benefits of integrating EMHASS and Home Assistant is the ability to customize and tailor the energy
management solution to the specific needs and preferences of each household. With EMHASS, households can define
their energy management objectives and constraints, such as maximizing self-consumption or minimizing energy costs,
and the system will generate an optimization plan accordingly. Home Assistant provides a platform for the automation
of devices based on the optimization plan, allowing households to create a fully customized and optimized energy
management solution.

Overall, the integration of EMHASS and Home Assistant offers a comprehensive energy management solution that
provides significant cost savings, increased energy efficiency, and greater sustainability for households. By leveraging
advanced energy management features and automation capabilities, households can achieve their energy management

3
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objectives while enjoying the benefits of a more efficient and sustainable energy usage, including optimized EV charging
schedules.

The package flow can be graphically represented as follows:

1.3 Configuration and Installation

The package is meant to be highly configurable with an object oriented modular approach and a main configuration
file defined by the user. EMHASS was designed to be integrated with Home Assistant, hence it’s name. Installation
instructions and example Home Assistant automation configurations are given below.

You must follow these steps to make EMHASS work properly:

1) Define all the parameters in the configuration file according to your installation. See the description for each
parameter in the configuration section.

2) You most notably will need to define the main data entering EMHASS. This will be the
sensor_power_photovoltaics for the name of the your hass variable containing the PV produced
power and the variable sensor_power_load_no_var_loads for the load power of your household excluding
the power of the deferrable loads that you want to optimize.

3) Launch the actual optimization and check the results. This can be done manually using the buttons in the web ui
or with a curl command like this: curl -i -H 'Content-Type:application/json' -X POST -d '{}'
http://localhost:5000/action/dayahead-optim.

4) If you’re satisfied with the optimization results then you can set the optimization and data publish task commands
in an automation. You can read more about this on the usage section below.

5) The final step is to link the deferrable loads variables to real switchs on your installation. An example code for
this using automations and the shell command integration is presented below in the usage section.

A more detailed workflow is given below:

4 Chapter 1. Intro / Quick start
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1.3.1 Method 1) The EMHASS add-on for Home Assistant OS and supervised users

For Home Assistant OS and HA Supervised users, I’ve developed an add-on that will help you use EMHASS. The
add-on is more user friendly as the configuration can be modified directly in the add-on options pane and as with the
standalone docker it exposes a web ui that can be used to inspect the optimization results and manually trigger a new
optimization.

You can find the add-on with the installation instructions here: https://github.com/davidusb-geek/emhass-add-on

The add-on usage instructions can be found on the documentation pane of the add-on once installed or directly here:
EMHASS Add-on documentation

These architectures are supported: amd64, armv7, armhf and aarch64.

1.3.2 Method 2) Using Docker in standalone mode

You can also install EMHASS using docker. This can be in the same machine as Home Assistant (if using the supervised
install method) or in a different distant machine. To install first pull the latest image from docker hub:

docker pull davidusb/emhass-docker-standalone

You can also build your image locally. For this clone this repository, setup your config_emhass.yaml file and use
the provided make file with this command:

make -f deploy_docker.mk clean_deploy

Then load the image in the .tar file:

docker load -i <TarFileName>.tar

Finally check your image tag with docker images and launch the docker itself:

docker run -it --restart always -p 5000:5000 -e LOCAL_COSTFUN="profit" -v $(pwd)/config_
→˓emhass.yaml:/app/config_emhass.yaml -v $(pwd)/secrets_emhass.yaml:/app/secrets_emhass.
→˓yaml --name DockerEMHASS <REPOSITORY:TAG>

• If you wish to keep a local, persistent copy of the EMHASS generated data, create a local folder on your device,
then mount said folder inside the container.

1.3. Configuration and Installation 5
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mkdir -p $(pwd)/data #linux: create data folder on local device

docker run -it --restart always -p 5000:5000 -e LOCAL_COSTFUN="profit" -v $(pwd)/
→˓config_emhass.yaml:/app/config_emhass.yaml -v $(pwd)/data:/app/data -v $(pwd)/
→˓secrets_emhass.yaml:/app/secrets_emhass.yaml --name DockerEMHASS <REPOSITORY:TAG>

If you wish to set the web_server’s diagrams to a timezone other than UTC, set TZ environment variable on:

docker run -it --restart always -p 5000:5000 -e TZ="Europe/Paris" -e LOCAL_COSTFUN=
→˓"profit" -v $(pwd)/config_emhass.yaml:/app/config_emhass.yaml -v $(pwd)/secrets_emhass.
→˓yaml:/app/secrets_emhass.yaml --name DockerEMHASS <REPOSITORY:TAG>

1.3.3 Method 3) Legacy method using a Python virtual environment

With this method it is recommended to install on a virtual environment. For this you will need virtualenv, install it
using:

sudo apt install python3-virtualenv

Then create and activate the virtual environment:

virtualenv -p /usr/bin/python3 emhassenv
cd emhassenv
source bin/activate

Install using the distribution files:

python3 -m pip install emhass

Clone this repository to obtain the example configuration files. We will suppose that this repository is cloned to:

/home/user/emhass

This will be the root path containing the yaml configuration files (config_emhass.yaml and secrets_emhass.yaml)
and the different needed folders (a data folder to store the optimizations results and a scripts folder containing the
bash scripts described further below).

To upgrade the installation in the future just use:

python3 -m pip install --upgrade emhass

1.4 Usage

1.4.1 Method 1) Add-on and docker standalone

If using the add-on or the standalone docker installation, it exposes a simple webserver on port 5000. You can access
it directly using your brower, ex: http://localhost:5000.

With this web server you can perform RESTful POST commands on multiple ENDPOINTS with prefix action/*:

• A POST call to action/perfect-optim to perform a perfect optimization task on the historical data.

• A POST call to action/dayahead-optim to perform a day-ahead optimization task of your home energy.

6 Chapter 1. Intro / Quick start



emhass, Release 0.8.6

• A POST call to action/naive-mpc-optim to perform a naive Model Predictive Controller optimization task.
If using this option you will need to define the correct runtimeparams (see further below).

• A POST call to action/publish-data to publish the optimization results data for the current timestamp.

• A POST call to action/forecast-model-fit to train a machine learning forecaster model with the passed
data (see the dedicated section for more help).

• A POST call to action/forecast-model-predict to obtain a forecast from a pre-trained machine learning
forecaster model (see the dedicated section for more help).

• A POST call to action/forecast-model-tune to optimize the machine learning forecaster models hyperpa-
rameters using bayesian optimization (see the dedicated section for more help).

A curl command can then be used to launch an optimization task like this: curl -i -H
'Content-Type:application/json' -X POST -d '{}' http://localhost:5000/action/
dayahead-optim.

1.4.2 Method 2) Legacy method using a Python virtual environment

To run a command simply use the emhass CLI command followed by the needed arguments. The available arguments
are:

• --action: That is used to set the desired action, options are: perfect-optim, dayahead-optim,
naive-mpc-optim, publish-data, forecast-model-fit, forecast-model-predict and
forecast-model-tune.

• --config: Define path to the config.yaml file (including the yaml file itself)

• --costfun: Define the type of cost function, this is optional and the options are: profit (default), cost,
self-consumption

• --log2file: Define if we should log to a file or not, this is optional and the options are: True or False (default)

• --params: Configuration as JSON.

• --runtimeparams: Data passed at runtime. This can be used to pass your own forecast data to EMHASS.

• --debug: Use True for testing purposes.

• --version: Show the current version of EMHASS.

For example, the following line command can be used to perform a day-ahead optimization task:

emhass --action 'dayahead-optim' --config '/home/user/emhass/config_emhass.yaml' --
→˓costfun 'profit'

Before running any valuable command you need to modify the config_emhass.yaml and secrets_emhass.yaml
files. These files should contain the information adapted to your own system. To do this take a look at the special
section for this in the documentation.

1.4. Usage 7
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1.5 Home Assistant integration

To integrate with home assistant we will need to define some shell commands in the configuration.yaml file and
some basic automations in the automations.yaml file. In the next few paragraphs we are going to consider the
dayahead-optim optimization strategy, which is also the first that was implemented, and we will also cover how to pub-
lish the results. Then additional optimization strategies were developed, that can be used in combination with/replace
the dayahead-optim strategy, such as MPC, or to expland the funcitonalities such as the Machine Learning method
to predict your hosehold consumption. Each of them has some specificities and features and will be considered in
dedicated sections.

1.5.1 Dayahead Optimization - Method 1) Add-on and docker standalone

In configuration.yaml:

shell_command:
dayahead_optim: "curl -i -H \"Content-Type:application/json\" -X POST -d '{}' http://

→˓localhost:5000/action/dayahead-optim"
publish_data: "curl -i -H \"Content-Type:application/json\" -X POST -d '{}' http://

→˓localhost:5000/action/publish-data"

1.5.2 Dayahead Optimization - Method 2) Legacy method using a Python virtual en-
vironment

In configuration.yaml:

shell_command:
dayahead_optim: /home/user/emhass/scripts/dayahead_optim.sh
publish_data: /home/user/emhass/scripts/publish_data.sh

Create the file dayahead_optim.sh with the following content:

#!/bin/bash
. /home/user/emhassenv/bin/activate
emhass --action 'dayahead-optim' --config '/home/user/emhass/config_emhass.yaml'

And the file publish_data.sh with the following content:

#!/bin/bash
. /home/user/emhassenv/bin/activate
emhass --action 'publish-data' --config '/home/user/emhass/config_emhass.yaml'

Then specify user rights and make the files executables:

sudo chmod -R 755 /home/user/emhass/scripts/dayahead_optim.sh
sudo chmod -R 755 /home/user/emhass/scripts/publish_data.sh
sudo chmod +x /home/user/emhass/scripts/dayahead_optim.sh
sudo chmod +x /home/user/emhass/scripts/publish_data.sh

8 Chapter 1. Intro / Quick start
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1.5.3 Common for any installation method

In automations.yaml:

- alias: EMHASS day-ahead optimization
trigger:
platform: time
at: '05:30:00'

action:
- service: shell_command.dayahead_optim

- alias: EMHASS publish data
trigger:
- minutes: /5
platform: time_pattern

action:
- service: shell_command.publish_data

In these automations the day-ahead optimization is performed everyday at 5:30am and the data is published every 5
minutes.

The final action will be to link a sensor value in Home Assistant to control the switch of a desired controllable load. For
example imagine that I want to control my water heater and that the publish-data action is publishing the optimized
value of a deferrable load that I want to be linked to my water heater desired behavior. In this case we could use an
automation like this one below to control the desired real switch:

automation:
- alias: Water Heater Optimized ON
trigger:
- minutes: /5
platform: time_pattern

condition:
- condition: numeric_state
entity_id: sensor.p_deferrable0
above: 0.1

action:
- service: homeassistant.turn_on
entity_id: switch.water_heater_switch

A second automation should be used to turn off the switch:

automation:
- alias: Water Heater Optimized OFF
trigger:
- minutes: /5
platform: time_pattern

condition:
- condition: numeric_state
entity_id: sensor.p_deferrable0
below: 0.1

action:
- service: homeassistant.turn_off
entity_id: switch.water_heater_switch

1.5. Home Assistant integration 9
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1.6 The publish-data specificities

The publish-data command will push to Home Assistant the optimization results for each deferrable load defined
in the configuration. For example if you have defined two deferrable loads, then the command will publish sensor.
p_deferrable0 and sensor.p_deferrable1 to Home Assistant. When the dayahead-optim is launched, after
the optimization, a csv file will be saved on disk. The publish-data command will load the latest csv file and look
for the closest timestamp that match the current time using the datetime.now() method in Python. This means that if
EMHASS is configured for 30min time step optimizations, the csv will be saved with timestamps 00:00, 00:30, 01:00,
01:30, . . . and so on. If the current time is 00:05, then the closest timestamp of the optimization results that will be
published is 00:00. If the current time is 00:25, then the closest timestamp of the optimization results that will be
published is 00:30.

The publish-data command will also publish PV and load forecast data on sensors p_pv_forecast and
p_load_forecast. If using a battery, then the battery optimized power and the SOC will be published on sensors
p_batt_forecast and soc_batt_forecast. On these sensors the future values are passed as nested attributes.

It is possible to provide custm sensor names for all the data exported by the publish-data command. For this, when
using the publish-data endpoint just add some runtime parameters as dictionaries like this:

shell_command:
publish_data: "curl -i -H \"Content-Type:application/json\" -X POST -d '{\"custom_load_

→˓forecast_id\": {\"entity_id\": \"sensor.p_load_forecast\", \"unit_of_measurement\": \
→˓"W\", \"friendly_name\": \"Load Power Forecast\"}}' http://localhost:5000/action/
→˓publish-data"

These keys are available to modify: custom_pv_forecast_id, custom_load_forecast_id,
custom_batt_forecast_id, custom_batt_soc_forecast_id, custom_grid_forecast_id,
custom_cost_fun_id, custom_deferrable_forecast_id, custom_unit_load_cost_id and
custom_unit_prod_price_id.

If you provide the custom_deferrable_forecast_id then the passed data should be a list of dictionaries, like this:

shell_command:
publish_data: "curl -i -H \"Content-Type:application/json\" -X POST -d '{\"custom_

→˓deferrable_forecast_id\": [{\"entity_id\": \"sensor.p_deferrable0\",\"unit_of_
→˓measurement\": \"W\", \"friendly_name\": \"Deferrable Load 0\"},{\"entity_id\": \
→˓"sensor.p_deferrable1\",\"unit_of_measurement\": \"W\", \"friendly_name\": \
→˓"Deferrable Load 1\"}]}' http://localhost:5000/action/publish-data"

And you should be careful that the list of dictionaries has the correct length, which is the number of defined deferrable
loads.

10 Chapter 1. Intro / Quick start
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1.6.1 Computed variables and published data

Below you can find a list of the variables resulting from EMHASS computation, shown in the charts and published to
Home Assistant through the publish_data command:

EMHASS
vari-
able

Definition Home
Assis-
tant
pub-
lished
sensor

P_PV Forecasted power generation from your solar panels (Watts). This helps you predict how much
solar energy you will produce during the forecast period.

sen-
sor.p_pv_forecast

P_Load Forecasted household power consumption (Watts). This gives you an idea of how much energy
your appliances are expected to use.

sen-
sor.p_load_forecast

P_deferrableX[X
= 0, 1,
2, . . . ]

Forecasted power consumption of deferrable loads (Watts). Deferable loads are appliances that
can be managed by EMHASS. EMHASS helps you optimise energy usage by prioritising solar
self-consumption and minimizing reliance on the grid or by taking advantage or supply and
feed-in tariff volatility. You can have multiple deferable loads and you use this sensor in HA to
control these loads via smart switch or other IoT means at your disposal.

sen-
sor.p_deferrableX

P_grid_posForecasted power imported from the grid (Watts). This indicates the amount of energy you are
expected to draw from the grid when your solar production is insufficient to meet your needs or
it is advantagous to consume from the grid.

-

P_grid_negForecasted power exported to the grid (Watts). This indicates the amount of excess solar energy
you are expected to send back to the grid during the forecast period.

-

P_batt Forecasted (dis)charge power load (Watts) for the battery (if installed). If negative it indicates
the battery is charging, if positive that the battery is discharging.

sen-
sor.p_batt_forecast

P_grid Forecasted net power flow between your home and the grid (Watts). This is calculated as
P_grid_pos - P_grid_neg. A positive value indicates net export, while a negative value indicates
net import.

sen-
sor.p_grid_forecast

SOC_optForecasted battery optimized Status Of Charge (SOC) percentage level sen-
sor.soc_batt_forecast

unit_load_costForecasted cost per unit of energy you pay to the grid (typically “Currency”/kWh). This helps
you understand the expected energy cost during the forecast period.

sen-
sor.unit_load_cost

unit_prod_priceForecasted price you receive for selling excess solar energy back to the grid (typically “Cur-
rency”/kWh). This helps you understand the potential income from your solar production.

sen-
sor.unit_prod_price

cost_profitForecasted profit or loss from your energy usage for the forecast period. This is calculated as
unit_load_cost * P_Load - unit_prod_price * P_grid_pos. A positive value indicates a profit,
while a negative value indicates a loss.

sen-
sor.total_cost_profit_value

cost_fun_costForecasted cost associated with deferring loads to maximize solar self-consumption. This helps
you evaluate the trade-off between managing the load and not managing and potential cost
savings.

sen-
sor.total_cost_fun_value

op-
tim_status

This contains the status of the latest execution and is the same you can see in the Log following
an optimization job. Its values can be Optimal or Infeasible.

sen-
sor.optim_status

1.6. The publish-data specificities 11
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1.7 Passing your own data

In EMHASS we have basically 4 forecasts to deal with:

• PV power production forecast (internally based on the weather forecast and the characteristics of your PV plant).
This is given in Watts.

• Load power forecast: how much power your house will demand on the next 24h. This is given in Watts.

• Load cost forecast: the price of the energy from the grid on the next 24h. This is given in EUR/kWh.

• PV production selling price forecast: at what price are you selling your excess PV production on the next 24h.
This is given in EUR/kWh.

The sensor containing the load data should be specified in parameter var_load in the configuration file. As we
want to optimize the household energies, when need to forecast the load power conumption. The default method
for this is a naive approach using 1-day persistence. The load data variable should not contain the data from the
deferrable loads themselves. For example, lets say that you set your deferrable load to be the washing machine.
The variable that you should enter in EMHASS will be: var_load: 'sensor.power_load_no_var_loads'
and sensor_power_load_no_var_loads = sensor_power_load - sensor_power_washing_machine. This
is supposing that the overall load of your house is contained in variable: sensor_power_load. The sensor
sensor_power_load_no_var_loads can be easily created with a new template sensor in Home Assistant.

If you are implementing a MPC controller, then you should also need to provide some data at the optimization runtime
using the key runtimeparams.

The valid values to pass for both forecast data and MPC related data are explained below.

1.7.1 Forecast data

It is possible to provide EMHASS with your own forecast data. For this just add the data as list of values to a data
dictionary during the call to emhass using the runtimeparams option.

For example if using the add-on or the standalone docker installation you can pass this data as list of values to the data
dictionary during the curl POST:

curl -i -H 'Content-Type:application/json' -X POST -d '{"pv_power_forecast":[0, 0, 0, 0,␣
→˓0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 70, 141.22, 246.18, 513.5, 753.27, 1049.89, 1797.
→˓93, 1697.3, 3078.93, 1164.33, 1046.68, 1559.1, 2091.26, 1556.76, 1166.73, 1516.63,␣
→˓1391.13, 1720.13, 820.75, 804.41, 251.63, 79.25, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]}' http:/
→˓/localhost:5000/action/dayahead-optim

Or if using the legacy method using a Python virtual environment:

emhass --action 'dayahead-optim' --config '/home/user/emhass/config_emhass.yaml' --
→˓runtimeparams '{"pv_power_forecast":[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,␣
→˓70, 141.22, 246.18, 513.5, 753.27, 1049.89, 1797.93, 1697.3, 3078.93, 1164.33, 1046.68,
→˓ 1559.1, 2091.26, 1556.76, 1166.73, 1516.63, 1391.13, 1720.13, 820.75, 804.41, 251.63,␣
→˓79.25, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]}'

The possible dictionary keys to pass data are:

• pv_power_forecast for the PV power production forecast.

• load_power_forecast for the Load power forecast.

• load_cost_forecast for the Load cost forecast.

• prod_price_forecast for the PV production selling price forecast.

12 Chapter 1. Intro / Quick start
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1.7.2 Passing other data

It is possible to also pass other data during runtime in order to automate the energy management. For example, it
could be useful to dynamically update the total number of hours for each deferrable load (def_total_hours) using
for instance a correlation with the outdoor temperature (useful for water heater for example).

Here is the list of the other additional dictionary keys that can be passed at runtime:

• num_def_loads for the number of deferrable loads to consider.

• P_deferrable_nom for the nominal power for each deferrable load in Watts.

• def_total_hours for the total number of hours that each deferrable load should operate.

• def_start_timestep for the timestep as from which each deferrable load is allowed to operate (if you don’t
want the deferrable load to use the whole optimization timewindow).

• def_end_timestep for the timestep before which each deferrable load should operate (if you don’t want the
deferrable load to use the whole optimization timewindow).

• treat_def_as_semi_cont to define if we should treat each deferrable load as a semi-continuous variable.

• set_def_constant to define if we should set each deferrable load as a constant fixed value variable with just
one startup for each optimization task.

• solcast_api_key for the SolCast API key if you want to use this service for PV power production forecast.

• solcast_rooftop_id for the ID of your rooftop for the SolCast service implementation.

• solar_forecast_kwp for the PV peak installed power in kW used for the solar.forecast API call.

• SOCtarget for the desired target value of initial and final SOC.

• publish_prefix use this key to pass a common prefix to all published data. This will add a prefix to the sensor
name but also to the forecasts attributes keys within the sensor.

1.8 A naive Model Predictive Controller

A MPC controller was introduced in v0.3.0. This is an informal/naive representation of a MPC controller. This can be
used in combination with/as a replacement of the Dayahead Optimization.

A MPC controller performs the following actions:

• Set the prediction horizon and receding horizon parameters.

• Perform an optimization on the prediction horizon.

• Apply the first element of the obtained optimized control variables.

• Repeat at a relatively high frequency, ex: 5 min.

This is the receding horizon principle.

When applying this controller, the following runtimeparams should be defined:

• prediction_horizon for the MPC prediction horizon. Fix this at at least 5 times the optimization time step.

• soc_init for the initial value of the battery SOC for the current iteration of the MPC.

• soc_final for the final value of the battery SOC for the current iteration of the MPC.

• def_total_hours for the list of deferrable loads functioning hours. These values can decrease as the day
advances to take into account receding horizon daily energy objectives for each deferrable load.

1.8. A naive Model Predictive Controller 13
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• def_start_timestep for the timestep as from which each deferrable load is allowed to operate (if you don’t
want the deferrable load to use the whole optimization timewindow). If you specify a value of 0 (or negative),
the deferrable load will be optimized as from the beginning of the complete prediction horizon window.

• def_end_timestep for the timestep before which each deferrable load should operate (if you don’t want the de-
ferrable load to use the whole optimization timewindow). If you specify a value of 0 (or negative), the deferrable
load optimization window will extend up to the end of the prediction horizon window.

A correct call for a MPC optimization should look like:

curl -i -H 'Content-Type:application/json' -X POST -d '{"pv_power_forecast":[0, 70, 141.
→˓22, 246.18, 513.5, 753.27, 1049.89, 1797.93, 1697.3, 3078.93], "prediction_horizon":10,
→˓ "soc_init":0.5,"soc_final":0.6}' http://192.168.3.159:5000/action/naive-mpc-optim

Example with :def_total_hours, def_start_timestep, def_end_timestep.

curl -i -H 'Content-Type:application/json' -X POST -d '{"pv_power_forecast":[0, 70, 141.
→˓22, 246.18, 513.5, 753.27, 1049.89, 1797.93, 1697.3, 3078.93], "prediction_horizon":10,
→˓ "soc_init":0.5,"soc_final":0.6,"def_total_hours":[1,3],"def_start_timestep":[0,3],
→˓"def_end_timestep":[0,6]}' http://localhost:5000/action/naive-mpc-optim

1.9 A machine learning forecaster

Starting in v0.4.0 a new machine learning forecaster class was introduced. This is intended to provide a new
and alternative method to forecast your household consumption and use it when such forecast is needed to opti-
mize your energy through the available strategies. Check the dedicated section in the documentation here: https:
//emhass.readthedocs.io/en/latest/mlforecaster.html

1.10 Development

Pull request are very much accepted on this project. For development you can find some instructions here Development

1.11 Troubleshooting

Some problems may arise from solver related issues in the Pulp package. It was found that for arm64 architectures (ie.
Raspberry Pi4, 64 bits) the default solver is not avaliable. A workaround is to use another solver. The glpk solver is
an option.

This can be controlled in the configuration file with parameters lp_solver and lp_solver_path. The options for
lp_solver are: ‘PULP_CBC_CMD’, ‘GLPK_CMD’ and ‘COIN_CMD’. If using ‘COIN_CMD’ as the solver you
will need to provide the correct path to this solver in parameter lp_solver_path, ex: ‘/usr/bin/cbc’.
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1.12 License

MIT License

Copyright (c) 2021-2023 David HERNANDEZ

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

1.12. License 15
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CHAPTER

TWO

EMHASS & EMHASS-ADD-ON DIFFERENCES

User will pass parameters into EMHASS differently, based on running Standalone mode or addon Mode.
This page tries to help to resolve the common confusion between the two.
Its best to see EMHASS-Add-on as a Home Assistant Docker wrapper for EMHASS. However, because of this con-
tainerization, certain changes are made between the two modes.

2.1 Configuration & parameter differences

Both EMHASS & EMHASS-Add-on utilize config_emhass.yaml for receiving parameters.
Where they diverge is EMHASS-Add-ons additional use of options.json, generated by Home Assistants
Configuration Page.
Any passed parameters given in options.jsonwill overwrite the parameters hidden in the config_emhass.yaml file
in EMHASS. (this results in config_emhass.yaml used for parameter default fall back if certain required parameters
were missing in options.json)

The parameters naming convention has also been changed in options.json, designed to make it easier for the user
to understand.

See bellow for a list of associations between the parameters from config_emhass.yaml and options.json:
You can view the current parameter differences in the Utils.py file under the build_params function.

config config_emhass.yaml options.json options.json list dictionary key
retrieve_hass_conf freq optimization_time_step
retrieve_hass_conf days_to_retrieve historic_days_to_retrieve
retrieve_hass_conf var_PV sensor_power_photovoltaics
retrieve_hass_conf var_load sensor_power_load_no_var_loads
retrieve_hass_conf load_negative load_negative
retrieve_hass_conf set_zero_min set_zero_min
retrieve_hass_conf method_ts_round method_ts_round
params_secrets solcast_api_key optional_solcast_api_key
params_secrets solcast_rooftop_id optional_solcast_rooftop_id
params_secrets solar_forecast_kwp optional_solar_forecast_kwp
params_secrets time_zone time_zone
params_secrets lat Latitude
params_secrets lon Longitude
params_secrets alt Altitude
optim_conf set_use_battery set_use_battery
optim_conf num_def_loads number_of_deferrable_loads
optim_conf P_deferrable_nom list_nominal_power_of_deferrable_loads nominal_power_of_deferrable_loads

continues on next page

17

https://github.com/davidusb-geek/emhass/blob/master/src/emhass/utils.py


emhass, Release 0.8.6

Table 1 – continued from previous page
config config_emhass.yaml options.json options.json list dictionary key
optim_conf def_total_hours list_operating_hours_of_each_deferrable_load operating_hours_of_each_deferrable_load
optim_conf treat_def_as_semi_cont list_treat_deferrable_load_as_semi_cont treat_deferrable_load_as_semi_cont
optim_conf set_def_constant list_set_deferrable_load_single_constant set_deferrable_load_single_constant
optim_conf weather_forecast_method weather_forecast_method
optim_conf load_forecast_method load_forecast_method
optim_conf delta_forecast delta_forecast_daily
optim_conf load_cost_forecast_method load_cost_forecast_method
optim_conf load_cost_hp load_peak_hours_cost
optim_conf load_cost_hc load_offpeak_hours_cost
optim_conf prod_price_forecast_method production_price_forecast_method
optim_conf prod_sell_price photovoltaic_production_sell_price
optim_conf set_total_pv_sell set_total_pv_sell
optim_conf lp_solver lp_solver
optim_conf lp_solver_path lp_solver_path
optim_conf set_nocharge_from_grid set_nocharge_from_grid
optim_conf set_nodischarge_to_grid set_nodischarge_to_grid
optim_conf set_battery_dynamic set_battery_dynamic
optim_conf battery_dynamic_max battery_dynamic_max
optim_conf battery_dynamic_min battery_dynamic_min
optim_conf weight_battery_discharge weight_battery_discharge
optim_conf weight_battery_charge weight_battery_charge
optim_conf def_start_timestep list_start_timesteps_of_each_deferrable_load start_timesteps_of_each_deferrable_load
optim_conf def_end_timestep list_end_timesteps_of_each_deferrable_load end_timesteps_of_each_deferrable_load
plant_conf P_grid_max maximum_power_from_grid
plant_conf module_model list_pv_module_model pv_module_model
plant_conf inverter_model list_pv_inverter_model pv_inverter_model
plant_conf surface_tilt list_surface_tilt surface_tilt
plant_conf surface_azimuth list_surface_azimuth surface_azimuth
plant_conf modules_per_string,list_modules_per_string modules_per_string
plant_conf strings_per_inverter list_strings_per_inverter strings_per_inverter
plant_conf Pd_max battery_discharge_power_max
plant_conf Pc_max battery_charge_power_max
plant_conf eta_disch battery_discharge_efficiency
plant_conf eta_ch battery_charge_efficiency
plant_conf Enom battery_nominal_energy_capacity
plant_conf SOCmin battery_minimum_state_of_charge
plant_conf SOCmax battery_maximum_state_of_charge
plant_conf SOCtarget battery_target_state_of_charge

Descriptions of each parameter, can be found at:

• Configuration file on EMHASS

• en.yaml on EMHASS-Add-on
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2.2 Passing in secret parameters

Secret parameters get passed differently, depending on which mode you choose. Alternative options are also present
for passing secrets if running EMHASS separately from Home Assistant. (I.e. not via EMHASS-Add-on)

2.2.1 EMHASS (with standalone mode)

Running EMHASS in standalone mode’s default workflow retrieves all secret parameters via a passed
secrets_emhass.yaml file. An example template has been provided under the name secrets_emhass(example).
yaml.

Alternative Options

For users who are running EMHASS with methods other than EMHASS-Add-on, secret parameters can be passed with
the use of arguments and/or environment variables. (instead of secrets_emhass.yaml)

Some arguments include: --url and --key
Some environment variables include: TIME_ZONE, LAT , LON, ALT, EMHASS_URL, EMHASS_KEY

Note: As of writing, EMHASS standalone will override ARG/ENV secret parameters if file is present.

For more information on passing arguments and environment variables using docker, have a look at some examples
from Configuration and Installation and EMHASS Development pages.

2.2.2 EMHASS-Add-on (addon mode)

By default the URL and KEY parameters have been set to empty/blank. This results in EMHASS calling to its Supervisor
API to gain access locally. This is the easiest method, as there is no user input necessary.

However, if you wish to receive/send sensor data to a different Home Assistant environment, set url and key values in
the hass_url & long_lived_token hidden parameters.

• hass_url example: https://192.168.1.2:8123/

• long_lived_token generated from the Long-lived access tokens section in your user profile settings

Secret Parameters such as: time_zone, lon, lat and alt are also automatically passed in via the Home Assistants
environment. (Values set in the Home Assistants config/general page)
Note: Local currency could also be obtained via the Home Assistant environment, however as of writing, this function-
ality has not yet been developed.

Secret Parameters such as: solcast_api_key, solcast_rooftop_id and solar_forecast_kwp (used by their
respective weather_forecast_method parameter values), can also be set via hidden parameters in the configuration
page.

2.2. Passing in secret parameters 19
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CHAPTER

THREE

AN EMS BASED ON LINEAR PROGRAMMING

In this section we present the basics of the Linear Programming (LP) approach for a household Energy Management
System (EMS).

3.1 Motivation

Imagine that we have installed some solar panels in our house. Imagine that we have Home Assistant and that we
can control (on/off) some crucial power consumptions in our home. For example the water heater, the pool pump, a
dispatchable dishwasher, and so on. We can also imagine that we have installed a battery like a PowerWall, in order to
maximize the PV self-consumption. With Home Assistant we also have sensors that can measure the power produced
by our PV plant, the global power consumption of the house and hopefully the power consumed by the controllable
loads. Home Assistant has released the Energy Dashboard where we can viusalize all these variables in somme really
good looking graphics. See: https://www.home-assistant.io/blog/2021/08/04/home-energy-management/

Now, how can we be certain of the good and optimal management of these devices? If we define a fixed schedule for
our deferrable loads, is this the best solution? When we can indicate or force a charge or discharge on the battery? This
is a well known academic problem for an Energy Management System.

The first and most basic approach could be to define some basic rules or heuristics, this is the so called rule-based
approach. The rules could be some fixed schedules for the deferrable loads, or some threshold based triggering of the
battery charge/discharge, and so on. The rule-based approach has the advantage of being simple to implement and
robust. However, the main disadvantage is that optimality is not guaranteed.

The goal of this work is to provide an easy to implement framework where anyone using Home Assistant can apply the
best and optimal set of instructions to control the energy flow in a household. There are many ways and techniques that
can be found in the literature to implement optimized EMS. In this package we are using just one of those techniques,
the Linear Programming approach, that will be presented below.

When I was designing and testing this package in my own house I estimated a daily gain between 5% and 8% when using
the optimized approach versus a rule-based one. In my house I have a 5 kWp PV installation with a contractual grid
supply of 9 kVA. I have a grid contract with two tariffs for power consumption for the grid (peak and non-peak hours)
and one tariff for the excess PV energy injected to the grid. I have no battery installed, but I suppose that the margin of
gain would be even bigger with a battery, adding flexibility to the energy management. Of course the disadvantage is
the initial capital cost of the battery stack. In my case the gain comes from the fact that the EMS is helping me to decide
when to turn on my water heater and the pool pump. If we have a good clear sky day the results of the optimization
will normally be to turn them on during the day where solar production is present. But if the day is going to be really
clouded, then is possible that the best solution will be to turn them on during the non-peak tariff hours, for my case this
is during the night from 9pm to 2am. All these decisions are made automatically by the EMS using forecasts of both
the PV production and the house power consumption.

Some other good packages and projects offer similar approaches to EMHASS. I can cite for example the good work
done by my friends at the G2ELab in Grenoble, France. They have implemented the OMEGAlpes package that can
also be used as an optimized EMS using LP and MILP (see: https://gricad-gitlab.univ-grenoble-alpes.fr/omegalpes/
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omegalpes). But here in EMHASS the first goal was to keep it simple to implement using configuration files and the
second goal was that it should be easy to integrate to Home Assistant. I am sure that there will be a lot of room for
optimize the code and the package implementation as this solution will be used and tested in the future.

I have included a list of scientific references at the bottom if you want to deep into the technical aspects of this subject.

Ok, let’s start by a resumed presentation of the LP approach.

3.2 Linear programming

Linear programming is an optimization method that can be used to obtain the best solution from a given cost function
using a linear modeling of a problem. Typically we can also also add linear constraints to the optimization problem.

This can be mathematically written as:

Maximize
𝑥

cTx

subject to
𝐴x ≤ b

and
x ≥ 0

with x the variable vector that we want to find, c and b are vectors with known coefficients and A is a matrix with
known values. Here the cost function is defined by cTx. The inequalities 𝐴x ≤ b and x ≥ 0 represent the convex
region of feasible solutions.

We could find a mix of real and integer variables in x, in this case the problem is referred as Mixed Integer Linear
Programming (MILP). Typically this kind of problem use the branch and boud type of solvers or similars.

The LP has of course its set of advantages and disadvantages. The main advantage is the that if the problem is well
posed and the region of feasible possible solutions is convex, then a solution is guaranteed and solving times are usually
fast when compared to other optimization techniques (as dynamic programming for example). However we can easily
fall into memory issues, larger solving times and convergence problems if the size of the problem is too high (too many
equations).

3.3 Household EMS with LP

The LP problem for the household EMS is solved in EMHASS using different user-chosen cost functions.

Three main cost functions are proposed.

3.3.1 Cost functions

1/ The profit cost function:

In this case the cost function is posed to maximize the profit. The profit is defined by the revenues from selling PV
power to the grid minus the cost of consumed energy from the grid. This can be represented with the following objective
function:

Δ𝑜𝑝𝑡/Δ𝑡∑︁
𝑖=1

−0.001 * ∆𝑡 * (𝑢𝑛𝑖𝑡𝐿𝑜𝑎𝑑𝐶𝑜𝑠𝑡[𝑖] * 𝑃𝑔𝑟𝑖𝑑𝑃𝑜𝑠[𝑖] + 𝑝𝑟𝑜𝑑𝑆𝑒𝑙𝑙𝑃𝑟𝑖𝑐𝑒 * 𝑃𝑔𝑟𝑖𝑑𝑁𝑒𝑔[𝑖])
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For the special case of an energy contract where the totality of the PV produced energy is injected into the
grid this will be:

>

Δ𝑜𝑝𝑡/Δ𝑡∑︁
𝑖=1

−0.001 * ∆𝑡 * (𝑢𝑛𝑖𝑡𝐿𝑜𝑎𝑑𝐶𝑜𝑠𝑡[𝑖] * (𝑃𝑙𝑜𝑎𝑑[𝑖] + 𝑃𝑑𝑒𝑓𝑆𝑢𝑚[𝑖]) + 𝑝𝑟𝑜𝑑𝑆𝑒𝑙𝑙𝑃𝑟𝑖𝑐𝑒 * 𝑃𝑔𝑟𝑖𝑑𝑁𝑒𝑔[𝑖]) >

where ∆𝑜𝑝𝑡 is the total period of optimization in hours, ∆𝑡 is the optimization time step in hours, 𝑢𝑛𝑖𝑡𝐿𝑜𝑎𝑑𝐶𝑜𝑠𝑡𝑖 is the
cost of the energy from the utility in EUR/kWh, 𝑃𝑙𝑜𝑎𝑑 is the electricity load consumption (positive defined), 𝑃𝑑𝑒𝑓𝑆𝑢𝑚

is the sum of the deferrable loads defined, 𝑝𝑟𝑜𝑑𝑆𝑒𝑙𝑙𝑃𝑟𝑖𝑐𝑒 is the price of the energy sold to the utility, 𝑃𝑔𝑟𝑖𝑑𝑁𝑒𝑔 is the
negative component of the grid power, this is the power exported to the grid. All these power are expressed in Watts.

2/ The energy from the grid cost:

In this case the cost function is computed as the cost of the energy coming from the grid. The PV power injected into
the grid is not valorized. This is:

Δ𝑜𝑝𝑡/Δ𝑡∑︁
𝑖=1

−0.001 * ∆𝑡 * 𝑢𝑛𝑖𝑡𝐿𝑜𝑎𝑑𝐶𝑜𝑠𝑡[𝑖] * 𝑃𝑔𝑟𝑖𝑑𝑃𝑜𝑠[𝑖]

Again, for the special case of an energy contract where the totality of the PV produced energy is injected
into the grid this will be:

>

Δ𝑜𝑝𝑡/Δ𝑡∑︁
𝑖=1

−0.001 * ∆𝑡 * 𝑢𝑛𝑖𝑡𝐿𝑜𝑎𝑑𝐶𝑜𝑠𝑡[𝑖] * (𝑃𝑙𝑜𝑎𝑑[𝑖] + 𝑃𝑑𝑒𝑓𝑆𝑢𝑚[𝑖]) >

3/ The self-consumption cost function:

This is a cost function designed to maximize the self-consumption of the PV plant.

Note: EMHASS has two methods for defining a self-consumption cost function: bigm and maxmin. In the current
version, only the bigm method is used, as the maxmin method has convergence issues.

bigM self-consumption method

In this case, the cost function is based on the profit cost function, but the energy offtake cost is weighted more heavily
than the energy injection revenue. This can be represented with the following objective function:

Δ𝑜𝑝𝑡/Δ𝑡∑︁
𝑖=1

−0.001 * ∆𝑡 * (𝑏𝑖𝑔𝑀 * 𝑢𝑛𝑖𝑡𝐿𝑜𝑎𝑑𝐶𝑜𝑠𝑡[𝑖] * 𝑃𝑔𝑟𝑖𝑑𝑃𝑜𝑠[𝑖] + 𝑝𝑟𝑜𝑑𝑆𝑒𝑙𝑙𝑃𝑟𝑖𝑐𝑒 * 𝑃𝑔𝑟𝑖𝑑𝑁𝑒𝑔[𝑖])

where bigM equals 1000. Adding this bigM factor will give more weight to the cost of grid offtake, or formulated
differently: avoiding offtake through self-consumption will have strong influence on the calculated cost.

Please note that the bigM factor is not used in the calculated cost that comes out of the optimizer results. It is only used
to drive the optimizer.
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Maxmin self-consumption method (currently disabled)

The cost function is computed as the revenues from selling PV power to the grid, plus the avoided cost
of consuming PV power locally (the latter means: valorizing the self-consumed cost at the grid offtake
price).

The self-consumption is defined as:

> 𝑆𝐶 = min(𝑃𝑃𝑉 , (𝑃𝑙𝑜𝑎𝑑 + 𝑃𝑑𝑒𝑓𝑆𝑢𝑚)) >

To convert this to a linear cost function, an additional continuous variable𝑆𝐶 is added. This is the so-called
maximin problem. The cost function is defined as:

>

Δ𝑜𝑝𝑡/Δ𝑡∑︁
𝑖=1

𝑆𝐶[𝑖] >

With the following set of constraints:

> 𝑆𝐶[𝑖] ≤ 𝑃𝑃𝑉 [𝑖] >

and

> 𝑆𝐶[𝑖] ≤ 𝑃𝑙𝑜𝑎𝑑[𝑖] + 𝑃𝑑𝑒𝑓𝑆𝑢𝑚[𝑖] >

All these cost functions can be chosen by the user with the --costfun tag with the emhass command. The options
are: profit, cost, self-consumption. They are all set in the LP formulation as cost function to maximize.

The problem constraints are written as follows.

3.3.2 The main constraint: power balance

𝑃𝑃𝑉𝑖 − 𝑃𝑑𝑒𝑓𝑆𝑢𝑚𝑖 − 𝑃𝑙𝑜𝑎𝑑𝑖 + 𝑃𝑔𝑟𝑖𝑑𝑁𝑒𝑔𝑖 + 𝑃𝑔𝑟𝑖𝑑𝑃𝑜𝑠𝑖 + 𝑃𝑠𝑡𝑜𝑃𝑜𝑠𝑖 + 𝑃𝑠𝑡𝑜𝑁𝑒𝑔𝑖 = 0

with 𝑃𝑃𝑉 the PV power production, 𝑃𝑔𝑟𝑖𝑑𝑃𝑜𝑠 the positive component of the grid power (from grid to household),
𝑃𝑠𝑡𝑜𝑃𝑜𝑠 and 𝑃𝑠𝑡𝑜𝑁𝑒𝑔 are the positive (discharge) and negative components of the battery power (charge).

Normally the PV power production and the electricity load consumption are considered known. In the case of a day-
ahead optimization these should be forecasted values. When the optimization problem is solved the others power
defining the power flow are found as a result: the deferrable load power, the grid power and the battery power.

3.3.3 Other constraints

Some other special linear constraints are defined. A constraint is introduced to avoid injecting and consuming from grid
at the same time, which is physically impossible. Other constraints are used to control the total time that a deferrable
load will stay on and the number of start-ups.

Constraints are also used to define semi-continuous variables. Semi-continuous variables are variables that must take
a value between their minimum and maximum or zero.

A final set of constraints is used to define the behavior of the battery. Notably:

• Ensure that maximum charge and discharge powers are not exceeded.

• Minimum and maximum state of charge values are not exceeded.

• Force the final state of charge value to be equal to the initial state of charge.
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The minimum and maximum state of charge limitations can be expressed as follows:

𝑘∑︁
𝑖=1

𝑃𝑠𝑡𝑜𝑃𝑜𝑠𝑖

𝜂𝑑𝑖𝑠
+ 𝜂𝑐ℎ𝑃𝑠𝑡𝑜𝑁𝑒𝑔𝑖 ≤

𝐸𝑛𝑜𝑚

∆𝑡
(𝑆𝑂𝐶𝑖𝑛𝑖𝑡 − 𝑆𝑂𝐶𝑚𝑖𝑛)

and

−(

𝑘∑︁
𝑖=1

𝑃𝑠𝑡𝑜𝑃𝑜𝑠𝑖

𝜂𝑑𝑖𝑠
+ 𝜂𝑐ℎ𝑃𝑠𝑡𝑜𝑁𝑒𝑔𝑖) ≤

𝐸𝑛𝑜𝑚

∆𝑡
(𝑆𝑂𝐶𝑚𝑎𝑥 − 𝑆𝑂𝐶𝑖𝑛𝑖𝑡)

where 𝐸𝑛𝑜𝑚 is the battery capacity in kWh, 𝜂𝑑𝑖𝑠/𝑐ℎ are the discharge and charge efficiencies and 𝑆𝑂𝐶 is the state of
charge.

Forcing the final state of charge value to be equal to the initial state of charge can be expressed as follows:

𝑘∑︁
𝑖=1

𝑃𝑠𝑡𝑜𝑃𝑜𝑠𝑖

𝜂𝑑𝑖𝑠
+ 𝜂𝑐ℎ𝑃𝑠𝑡𝑜𝑁𝑒𝑔𝑖 =

𝐸𝑛𝑜𝑚

∆𝑡
(𝑆𝑂𝐶𝑖𝑛𝑖𝑡 − 𝑆𝑂𝐶𝑓𝑖𝑛𝑎𝑙)

3.4 The EMHASS optimizations

There are 3 different optimization types that are implemented in EMHASS.

• A perfect forecast optimization.

• A day-ahead optimization.

• A Model Predictive Control optimization.

The following example diagram may help us understand the time frames of these optimizations:
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3.4.1 Perfect forecast optimization

This is the first type of optimization task that are proposed with this package. In this case the main inputs, the PV power
production and the house power consumption, are fixed using historical values from the past. This mean that in some
way we are optimizing a system with a perfect knowledge of the future. This optimization is of course non-practical in
real life. However this can be give us the best possible solution of the optimization problem that can be later used as a
reference for comparison purposes. On the example diagram presented before, the perfect optimization is defined on a
5-day period. These historical values will be retrieved from the Home Assistant database.

3.4.2 Day-ahead optimization

In this second type of optimization task the PV power production and the house power consumption are forecasted
values. This is the action that should be performed in a real case scenario and is the case that should be launched from
Home Assistant to obtain an optimized energy management of future actions. This optimization is defined in the time
frame of the next 24 hours.

As the optimization is bounded to forecasted values, it will also be bounded to uncertainty. The quality and accuracy
of the optimization results will be inevitably linked to the quality of the forecast used for these values. The better the
forecast error, the better accuracy of the optimization result.

3.4.3 Model Predictive Control (MPC) optimization

This is an informal/naive representation of a MPC controller.

This type of controller performs the following actions:

• Set the prediction horizon and receding horizon parameters.

• Perform an optimization on the prediction horizon.

• Apply the first element of the obtained optimized control variables.

• Repeat at a relatively high frequency, ex: 5 min.

On the example diagram presented before, the MPC is performed on 6h intervals at 6h, 12h and 18h. The prediction
horizon is progressively reducing during the day to keep the one-day energy optimization notion (it should not just be a
fixed rolling window as, for example, you would like to know when you want to reach the desired soc_final). This type
of optimization is used to take advantage of actualized forecast values during throughout the day. The user can of course
choose higher/lower implementation intervals, keeping in mind the contraints below on the prediction_horizon.

When applying this controller, the following runtimeparams should be defined:

• prediction_horizon for the MPC prediction horizon. Fix this at at least 5 times the optimization time step.

• soc_init for the initial value of the battery SOC for the current iteration of the MPC.

• soc_final for the final value of the battery SOC for the current iteration of the MPC.

• def_total_hours for the list of deferrable loads functioning hours. These values can decrease as the day
advances to take into account receding horizon daily energy objectives for each deferrable load.

• def_start_timestep for the timestep as from which each deferrable load is allowed to operate (if you don’t
want the deferrable load to use the whole optimization timewindow). If you specify a value of 0 (or negative),
the deferrable load will be optimized as from the beginning of the complete prediction horizon window.

• def_end_timestep for the timestep before which each deferrable load should operate (if you don’t want the de-
ferrable load to use the whole optimization timewindow). If you specify a value of 0 (or negative), the deferrable
load will be optimized over the complete prediction horizon window.
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In a practical use case, the values for soc_init and soc_final for each MPC optimization can be taken from the
initial day-ahead optimization performed at the beginning of each day.

3.4.4 Time windows for deferrable loads

Since v0.7.0, the user has the possibility to limit the operation of each deferrable load to a specific timewin-
dow, which can be smaller than the prediction horizon. This is done by means of the def_start_timestep and
def_end_timestep parameters. These parameters can either be set in the configuration screen of the Home Assistant
EMHASS add-on, in the config_emhass.yaml file, or provided as runtime parameters.

Taking the example of two electric vehicle that need to charge, but which are not available during the whole prediction

horizon:

For this example, the settings could look like this: Either in the Home Assistant add-on config screen:

Either as runtime parameter:

curl -i -H 'Content-Type:application/json' -X POST -d '{"prediction_horizon":30, "def_
→˓total_hours":[4,2],"def_start_timestep":[4,0],"def_end_timestep":[27,23]}' http://
→˓localhost:5000/action/naive-mpc-optim

Please note that the proposed deferrable load time windows will be submitted to a val-
idation step & can be automatically corrected. Possible cases are depicted below:
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CHAPTER

FOUR

THE FORECAST MODULE

EMHASS will basically need 4 forecasts to work properly:

• PV power production forecast (internally based on the weather forecast and the characteristics of your PV plant).
This is given in Watts.

• Load power forecast: how much power your house will demand on the next 24h. This is given in Watts.

• Load cost forecast: the price of the energy from the grid on the next 24h. This is given in EUR/kWh.

• PV production selling price forecast: at what price are you selling your excess PV production on the next 24h.
This is given in EUR/kWh.

There are methods that are generalized to the 4 forecast needed. For all there forecasts it is possible to pass the data
either as a passed list of values or by reading from a CSV file. With these methods it is then possible to use data from
external forecast providers.

Then there are the methods that are specific to each type of forecast and that proposed forecast treated and generated
internally by this EMHASS forecast class. For the weather forecast a first method (scrapper) uses a scrapping to the
ClearOutside webpage which proposes detailed forecasts based on Lat/Lon locations. Another method (solcast) is
using the SolCast PV production forecast service. A final method (solar.forecast) is using another external service:
Solar.Forecast, for which just the nominal PV peak installed power should be provided. Search the forecast section on
the documentation for examples on how to implement these different methods.

The get_power_from_weather method is proposed here to convert from irradiance data to electrical power. The
PVLib module is used to model the PV plant. A dedicated webapp will help you search for your correct PV module
and inverter: https://emhass-pvlib-database.streamlit.app/

The specific methods for the load forecast are a first method (naive) that uses a naive approach, also called persistance.
It simply assumes that the forecast for a future period will be equal to the observed values in a past period. The past
period is controlled using parameter delta_forecast. A second method (mlforecaster) uses an internal custom
forecasting model using machine learning. There is a section in the documentation explaining how to use this method.

Note: This custom machine learning model is introduced from v0.4.0. EMHASS proposed this new mlforecaster
class with fit, predict and tune methods. Only the predict method is used here to generate new forecasts, but it
is necessary to previously fit a forecaster model and it is a good idea to optimize the model hyperparameters using the
tune method. See the dedicated section in the documentation for more help.

For the PV production selling price and Load cost forecasts the privileged method is a direct read from a user provided
list of values. The list should be passed as a runtime parameter during the curl to the EMHASS API.
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4.1 PV power production forecast

The default method for PV power forecast is the scrapping of weather forecast data from the https://clearoutside.com/
website. This is obtained using method=scrapper. This site proposes detailed forecasts based on Lat/Lon locations.
This method seems quite stable but as with any scrape method it will fail if any changes are made to the webpage
API. The weather forecast data is then converted into PV power production using the list_pv_module_model and
list_pv_inverter_model paramters defined in the configuration.

A second method uses the SolCast solar forecast service. Go to https://solcast.com/ and configure your system. You
will need to set method=solcast and basically use two parameters solcast_rooftop_id and solcast_api_key
that should be passed as parameters at runtime. This will be limited to 10 API requests per day, the granularity will
be 30 min and the forecast is updated every 6h. If needed, better performances may be obtained with paid plans:
https://solcast.com/pricing/live-and-forecast.

For example:

curl -i -H "Content-Type:application/json" -X POST -d '{"solcast_rooftop_id":"<your_
→˓system_id>","solcast_api_key":"<your_secret_api_key>"}' http://localhost:5000/action/
→˓dayahead-optim

A third method uses the Solar.Forecast service. You will need to set method=solar.forecast and use just one
parameter solar_forecast_kwp (the PV peak installed power in kW) that should be passed at runtime. This will be
using the free public Solar.Forecast account with 12 API requests per day and 1h data resolution. As with SolCast,
there are paid account services that may results in better forecasts.

For example, for a 5 kWp installation:

curl -i -H "Content-Type:application/json" -X POST -d '{"solar_forecast_kwp":5}' http://
→˓localhost:5000/action/dayahead-optim

Note: If you use the Solar.Forecast or Solcast methods, or explicitly pass the PV power forecast values (see below),
the list_pv_module_model and list_pv_inverter_model paramters defined in the configuration will be ignored.

4.2 Load power forecast

The default method for load forecast is a naive method, also called persistence. This is obtained using method=naive.
This method simply assumes that the forecast for a future period will be equal to the observed values in a past period.
The past period is controlled using parameter delta_forecast and the default value for this is 24h.

This is presented graphically here:
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Note: New in EMHASS v0.4.0: machine learning forecast models!

Starting with v0.4.0, a new forecast framework is proposed within EMHASS. It provides a more efficient way to forecast
the power load consumption. It is based on the skforecast module that uses scikit-learn regression models
considering auto-regression lags as features. The hyperparameter optimization is proposed using bayesian optimization
from the optuna module. To use this change to method=mlforecaster in the configuration.

The API provides fit, predict and tune methods.

The following is an example of a trained model using a KNN regressor:

The naive persistance model performs very well on the 2 day test period, however is well out-performed by the KNN
regressor when back-testing on the complete training set (10 months of 30 minute time step data).

The hyperparameter tuning using bayesian optimization improves the bare KNN regressor from 𝑅2 = 0.59 to 𝑅2 =
0.75. The optimized number of lags is 48.

See the machine learning forecaster section for more details.

4.3 Load cost forecast

The default method for load cost forecast is defined for a peak and non-peak hours contract type. This is obtained using
method=hp_hc_periods.

When using this method you can provide a list of peak-hour periods, so you can add as many peak-hour periods as
possible.

As an example for a two peak-hour periods contract you will need to define the following list in the configuration file:

- list_hp_periods:
- period_hp_1:

- start: '02:54'
- end: '15:24'

- period_hp_2:
- start: '17:24'
- end: '20:24'

- load_cost_hp: 0.1907
- load_cost_hc: 0.1419
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This example is presented graphically here:

4.4 PV production selling price forecast

The default method for this forecast is simply a constant value. This can be obtained using method=constant.

Then you will need to define the prod_sell_price variable to provide the correct price for energy injected to the grid
from excedent PV production in €/kWh.

4.5 Passing your own forecast data

For all the needed forecasts in EMHASS two other methods allows the user to provide their own forecast value. This
may be used to provide a forecast provided by a more powerful and accurate forecaster. The two methods are: csv and
list.

For the csv method you should push a csv file to the data folder. The CSV file should contain no header and the
timestamped data should have the following format:

2021-04-29 00:00:00+00:00,287.07
2021-04-29 00:30:00+00:00,274.27
2021-04-29 01:00:00+00:00,243.38
...

For the list method you just have to add the data as a list of values to a data dictionnary during the call to emhass using
the runtimeparams option.

The possible dictionnary keys to pass data are:

• pv_power_forecast for the PV power production forecast.

• load_power_forecast for the Load power forecast.

• load_cost_forecast for the Load cost forecast.

• prod_price_forecast for the PV production selling price forecast.

For example if using the add-on or the standalone docker installation you can pass this data as list of values to the data
dictionnary during the curl POST:

32 Chapter 4. The forecast module



emhass, Release 0.8.6

curl -i -H "Content-Type: application/json" -X POST -d '{"pv_power_forecast":[0, 0, 0, 0,
→˓ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 70, 141.22, 246.18, 513.5, 753.27, 1049.89, 1797.
→˓93, 1697.3, 3078.93, 1164.33, 1046.68, 1559.1, 2091.26, 1556.76, 1166.73, 1516.63,␣
→˓1391.13, 1720.13, 820.75, 804.41, 251.63, 79.25, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]}' http:/
→˓/localhost:5000/action/dayahead-optim

You need to be careful here to send the correct amount of data on this list, the correct length. For example, if the data
time step is defined to 1h and you are performing a day-ahead optimization, then this list length should be of 24 data
points.

4.5.1 Example using: SolCast forecast + Amber prices

If you’re using SolCast then you can define the following sensors in your system:

sensors:

- platform: rest
name: "Solcast Forecast Data"
json_attributes:
- forecasts

resource: https://api.solcast.com.au/rooftop_sites/yyyy/forecasts?format=json&api_
→˓key=xxx&hours=24

method: GET
value_template: "{{ (value_json.forecasts[0].pv_estimate)|round(2) }}"
unit_of_measurement: "kW"
device_class: power
scan_interval: 8000
force_update: true

- platform: template
sensors:
solcast_24hrs_forecast :
value_template: >-
{%- set power = state_attr('sensor.solcast_forecast_data', 'forecasts') |␣

→˓map(attribute='pv_estimate') | list %}
{%- set values_all = namespace(all=[]) %}
{% for i in range(power | length) %}
{%- set v = (power[i] | float |multiply(1000) ) | int(0) %}
{%- set values_all.all = values_all.all + [ v ] %}

{%- endfor %} {{ (values_all.all)[:48] }}

With this you can now feed this SolCast forecast to EMHASS along with the mapping of the Amber prices.

A MPC call may look like this for 4 deferrable loads:

post_mpc_optim_solcast: "curl -i -H \"Content-Type: application/json\" -X POST -d '{\
→˓"load_cost_forecast\":{{(

([states('sensor.amber_general_price')|float(0)] +
state_attr('sensor.amber_general_forecast', 'forecasts') |map(attribute='per_

→˓kwh')|list)[:48])
}}, \"prod_price_forecast\":{{(
([states('sensor.amber_feed_in_price')|float(0)] +
state_attr('sensor.amber_feed_in_forecast', 'forecasts')|map(attribute='per_kwh

(continues on next page)
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(continued from previous page)

→˓')|list)[:48])
}}, \"pv_power_forecast\":{{states('sensor.solcast_24hrs_forecast')
}}, \"prediction_horizon\":48,\"soc_init\":{{(states('sensor.powerwall_charge

→˓')|float(0))/100
}},\"soc_final\":0.05,\"def_total_hours\":[2,0,0,0]}' http://localhost:5000/

→˓action/naive-mpc-optim"

Thanks to @purcell_labs for this example configuration.

4.5.2 Example combining multiple SolCast configurations

If you have multiple rooftops, for example for east-west facing solar panels, then you will need to fuze the sensors
providing the different forecasts on a single one using templates in Home Assistant. Then feed that single sensor data
passing the data as a list when calling the shell command.

Here is a sample configuration to achieve this, thanks to @gieljnssns for sharing.

The two sensors using rest sensors:

- platform: rest
name: "Solcast Forecast huis"
json_attributes:
- forecasts

resource: https://api.solcast.com.au/rooftop_sites/xxxxxxxxxxc/forecasts?format=json&
→˓api_key=xxxxxxxxx&hours=24
method: GET
value_template: "{{ (value_json.forecasts[0].pv_estimate)|round(2) }}"
unit_of_measurement: "kW"
device_class: power
scan_interval: 86400
force_update: true

- platform: rest
name: "Solcast Forecast garage"
json_attributes:
- forecasts

resource: https://api.solcast.com.au/rooftop_sites/xxxxxxxxxxc/forecasts?format=json&
→˓api_key=xxxxxxxxx&hours=24
method: GET
value_template: "{{ (value_json.forecasts[0].pv_estimate)|round(2) }}"
unit_of_measurement: "kW"
device_class: power
scan_interval: 86400
force_update: true

Then two templates, one for each sensor:

solcast_24hrs_forecast_garage:
value_template: >-
{%- set power = state_attr('sensor.solcast_forecast_garage', 'forecasts') |␣

→˓map(attribute='pv_estimate') | list %}
{%- set values_all = namespace(all=[]) %}

(continues on next page)
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(continued from previous page)

{% for i in range(power | length) %}
{%- set v = (power[i] | float |multiply(1000) ) | int(0) %}
{%- set values_all.all = values_all.all + [ v ] %}

{%- endfor %} {{ (values_all.all)[:48] }}

solcast_24hrs_forecast_huis:
value_template: >-
{%- set power = state_attr('sensor.solcast_forecast_huis', 'forecasts') |␣

→˓map(attribute='pv_estimate') | list %}
{%- set values_all = namespace(all=[]) %}
{% for i in range(power | length) %}
{%- set v = (power[i] | float |multiply(1000) ) | int(0) %}
{%- set values_all.all = values_all.all + [ v ] %}

{%- endfor %} {{ (values_all.all)[:48] }}

And the fusion of the two sensors:

solcast_24hrs_forecast:
value_template: >-
{% set a = states("sensor.solcast_24hrs_forecast_garage")[1:-1].split(',') | map(

→˓'int') | list %}
{% set b = states("sensor.solcast_24hrs_forecast_huis")[1:-1].split(',') | map(

→˓'int') | list %}
{% set ns = namespace(items = []) %}
{% for i in range(a | length) %}
{% set ns.items = ns.items + [ a[i] + b[i] ] %}

{% endfor %}
{{ ns.items }}

And finally the shell command:

dayahead_optim: "curl -i -H \"Content-Type:application/json\" -X POST -d '{\"pv_power_
→˓forecast\":{{states('sensor.solcast_24hrs_forecast')}}}' http://localhost:5001/action/
→˓dayahead-optim"

4.5.3 Example using the Nordpool integration

The Nordpool integration provides spot market electricity prices (consumption and production) for the Nordic, Baltic
and part of Western Europe. An integration for Home Assistant can be found here: https://github.com/custom-
components/nordpool

After setup the sensors should appear in Home Assistant for raw today and tomorrow values.

The subsequent shell command to concatenate today and tomorrow values can be for example:

shell_command:
trigger_nordpool_forecast: "curl -i -H \"Content-Type: application/json\" -X POST -d '

→˓{\"load_cost_forecast\":{{((state_attr('sensor.nordpool', 'raw_today') | map(attribute=
→˓'value') | list + state_attr('sensor.nordpool', 'raw_tomorrow') | map(attribute='value
→˓') | list))[now().hour:][:24] }},\"prod_price_forecast\":{{((state_attr('sensor.
→˓nordpool', 'raw_today') | map(attribute='value') | list + state_attr('sensor.nordpool
→˓', 'raw_tomorrow') | map(attribute='value') | list))[now().hour:][:24]}}}' http://
→˓localhost:5000/action/dayahead-optim"

4.5. Passing your own forecast data 35



emhass, Release 0.8.6

4.6 Now/current values in forecasts

When implementing MPC applications with high optimization frequencies it can be interesting if at each MPC iteration
the forecast values are updated with the real now/current values measured from live data. This is useful to improve the
accuracy of the short-term forecasts. As shown in some of the references below, mixing with a persistance model make
sense since this type of model performs very good at low temporal resolutions (intra-hour).

A simple integration of current/now values for PV and load forecast is implemented using a mixed one-observation
presistence model and the one-step-ahead forecasted values from the current passed method.

This can be represented by the following equation at time 𝑡 = 𝑘:

𝑃𝑚𝑖𝑥
𝑃𝑉 = 𝛼𝑃𝑃𝑉 (𝑘) + 𝛽𝑃𝑃𝑉 (𝑘 − 1)

Where𝑃𝑚𝑖𝑥
𝑃𝑉 is the mixed power forecast for PV prodduction, 𝑃𝑃𝑉 (𝑘) is the current first element of the original forecast

data, 𝑃𝑃𝑉 (𝑘 − 1) is the now/current value of PV production and 𝛼 and 𝛽 are coefficients that can be fixed to reflect
desired dominance of now/current values over the original forecast data or viceversa.

The alpha and beta values can be passed in the dictionnary using the runtimeparams option during the call to
emhass. If not passed they will both take the default 0.5 value. These values should be fixed following your own
analysis on how much weight you want to put on measured values to be used as the persistance forecast. This will also
depend on your fixed optimization time step. As a default they will be at 0.5, but if you want to give more weight to
measured persistance values, then you can try lower 𝛼 and rising 𝛽, for example: alpha=0.25, beta=0.75. After this
you will need to check with the recored history if these values fits your needs.

4.7 References

• E. Lorenz, J. Kuhnert, A. Hammer, D. Heinemann, Photovoltaic (PV) power predictions with PV measurements,
satellite data and numerical weather predictions. Presented at CM2E, Energy & Environment Symposium, Mar-
tinique, 2014.

• Maimouna Diagne, Mathieu David, Philippe Lauret, John Boland, NicolasSchmutz, Review of solar irradiance
forecasting methods and a proposition for small-scale insular grids. Renewable and Sustainable Energy Reviews
27 (2013) 65–76.
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CHAPTER

FIVE

THE MACHINE LEARNING FORECASTER

Starting with v0.4.0, a new forecast framework is proposed within EMHASS. It provides a more efficient way to forecast
the power load consumption. It is based on the skforecast module that uses scikit-learn regression models
considering auto-regression lags as features. The hyperparameter optimization is proposed using bayesian optimization
from the optuna module.

This API provides three main methods:

• fit: to train a model with the passed data. This method is exposed with the forecast-model-fit end point.

• predict: to obtain a forecast from a pre-trained model. This method is exposed with the
forecast-model-predict end point.

• tune: to optimize the models hyperparameters using bayesian optimization. This method is exposed with the
forecast-model-tune end point.

5.1 A basic model fit

To train a model use the forecast-model-fit end point.

Some paramters can be optionally defined at runtime:

• days_to_retrieve: the total days to retrieve from Home Assistant for model training. Define this in order to
retrieve as much history data as possible.

Note: The minimum number of days_to_retrieve is hard coded to 9 by default. But it is adviced to provide more
data for better accuracy by modifying your Home Assistant recorder settings.

• model_type: define the type of model forecast that this will be used for. For example: load_forecast. This
should be an unique name if you are using multiple custom forecast models.

• var_model: the name of the sensor to retrieve data from Home Assistant. Example: sensor.
power_load_no_var_loads.

• sklearn_model: the scikit-learn model that will be used. For now only this options are possible:
LinearRegression, ElasticNet and KNeighborsRegressor.

• num_lags: the number of auto-regression lags to consider. A good starting point is to fix this as one day. For
example if your time step is 30 minutes, then fix this to 48, if the time step is 1 hour the fix this to 24 and so on.

• split_date_delta: the delta from now to split_date_delta that will be used as the test period to evaluate
the model.

• perform_backtest: if True then a back testing routine is performed to evaluate the performance of the model
on the complete train set.
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The default values for these parameters are:

runtimeparams = {
"days_to_retrieve": 9,
"model_type": "load_forecast",
"var_model": "sensor.power_load_no_var_loads",
"sklearn_model": "KNeighborsRegressor",
"num_lags": 48,
"split_date_delta": '48h',
"perform_backtest": False

}

A correct curl call to launch a model fit can look like this:

curl -i -H "Content-Type:application/json" -X POST -d '{}' http://localhost:5000/action/
→˓forecast-model-fit

As an example, the following figure shows a 240 days load power data retrieved from EMHASS and that will be used
for a model fit:

After applying the curl command to fit the model the following information is logged by EMHASS:

2023-02-20 22:05:22,658 - __main__ - INFO - Training a KNN regressor
2023-02-20 22:05:23,882 - __main__ - INFO - Elapsed time: 1.2236599922180176
2023-02-20 22:05:24,612 - __main__ - INFO - Prediction R2 score: 0.2654560762747957

As we can see the 𝑅2 score for the fitted model on the 2 day test perdiod is 0.27. A quick prediction graph using the
fitted model should be available in the webui:

Visually the prediction looks quite acceptable but we need to evaluate this further. For this we can use the
"perform_backtest": True option to perform a backtest evaluation using this syntax:

curl -i -H "Content-Type:application/json" -X POST -d '{"perform_backtest": "True"}'␣
→˓http://localhost:5000/action/forecast-model-fit

The results of the backtest will be shown in the logs:

2023-02-20 22:05:36,825 - __main__ - INFO - Simple backtesting
2023-02-20 22:06:32,162 - __main__ - INFO - Backtest R2 score: 0.5851552394233677

So the mean backtest metric of our model is 𝑅2 = 0.59.

Here is the graphic result of the backtesting routine:
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5.2 The predict method

To obtain a prediction using a previously trained model use the forecast-model-predict end point.

curl -i -H "Content-Type:application/json" -X POST -d '{}' http://localhost:5000/action/
→˓forecast-model-predict

If needed pass the correct model_type like this:

curl -i -H "Content-Type:application/json" -X POST -d '{"model_type": "load_forecast"}'␣
→˓http://localhost:5000/action/forecast-model-predict

The resulting forecast DataFrame is shown in the webui.

It is possible to publish the predict method results to a Home Assistant sensor. By default this is desactivated but it can
be activated by using runtime parameters.

The list of parameters needed to set the data publish task is:

• model_predict_publish: set to True to activate the publish action when calling the
forecast-model-predict end point.

• model_predict_entity_id: the unique entity_id to be used.

• model_predict_unit_of_measurement: the unit_of_measurement to be used.

• model_predict_friendly_name: the friendly_name to be used.

The default values for these parameters are:

runtimeparams = {
"model_predict_publish": False,
"model_predict_entity_id": "sensor.p_load_forecast_custom_model",
"model_predict_unit_of_measurement": "W",
"model_predict_friendly_name": "Load Power Forecast custom ML model"

}

5.3 The tuning method with Bayesian hyperparameter optimization

With a previously fitted model you can use the forecast-model-tune end point to tune its hyperparameters. This
will be using bayeasian optimization with a wrapper of optuna in the skforecast module.

You can pass the same parameter you defined during the fit step, but var_model has to be defined at least. According
to the example, the syntax will be:

curl -i -H "Content-Type:application/json" -X POST -d '{"var_model": "sensor.power_load_
→˓no_var_loads"}' http://localhost:5000/action/forecast-model-tune

This will launch the optimization routine and optimize the internal hyperparamters of the scikit-learn regressor
and it will find the optimal number of lags. The following are the logs with the results obtained after the optimization
for a KNN regressor:

2023-02-20 22:06:43,112 - __main__ - INFO - Backtesting and bayesian hyperparameter␣
→˓optimization
2023-02-20 22:25:29,987 - __main__ - INFO - Elapsed time: 1126.868682384491

(continues on next page)
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(continued from previous page)

2023-02-20 22:25:50,264 - __main__ - INFO - ### Train/Test R2 score comparison ###
2023-02-20 22:25:50,282 - __main__ - INFO - R2 score for naive prediction in train␣
→˓period (backtest): 0.22525145245617462
2023-02-20 22:25:50,284 - __main__ - INFO - R2 score for optimized prediction in train␣
→˓period: 0.7485208725102304
2023-02-20 22:25:50,312 - __main__ - INFO - R2 score for non-optimized prediction in␣
→˓test period: 0.7098996657492629
2023-02-20 22:25:50,337 - __main__ - INFO - R2 score for naive persistance forecast in␣
→˓test period: 0.8714987509894714
2023-02-20 22:25:50,352 - __main__ - INFO - R2 score for optimized prediction in test␣
→˓period: 0.7572325833767719

This is a graph comparing these results:

The naive persistance load forecast model performs very well on the 2 day test period with a 𝑅2 = 0.87, however is
well out-performed by the KNN regressor when back-testing on the complete training set (10 months of 30 minute time
step data) with a score 𝑅2 = 0.23.

The hyperparameter tuning using bayesian optimization improves the bare KNN regressor from 𝑅2 = 0.59 to 𝑅2 =
0.75. The optimized number of lags is 48.

Warning: The tuning routine can be computing intense. If you have problems with computation times, try to
reduce the days_to_retrieve parameter. In the example shown, for a 240 days train period, the optimization
routine took almost 20 min to finish on an amd64 Linux architecture machine with a i5 processor and 8 Gb of
RAM. This is a task that should be performed once in a while, for example every week.

5.4 How does this works?

This machine learning forecast class is based on the skforecastmodule. We use the recursive autoregresive forecaster
with added features.

I will borrow this image from the skforecast documentation that help us understand the working principles of this
type of model.
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With this type of model what we do in EMHASS is to create new features based on the timestamps of the data retrieved
from Home Assistant. We create new features based on the day, the hour of the day, the day of the week, the month of
the year, among others.

What is interesting is that these added features are based on the timestamps, they always known in advance and useful
for generating forecasts. These are the so-called future known covariates.

In the future we may test to expand using other possible known future covariates from Home Assistant, for example a
known (forecasted) temperature, a scheduled presence sensor, etc.

5.5 Going further?

This class can be gebneralized to actually forecasting any given sensor variable present in Home Assistant. It has been
tested and the main initial motivation for this development was for a better load power consumption forecasting. But
in reality is has been coded in a flexible way so that you can control what variable is used, how many lags, the amount
of data used to train the model, etc.

So you can really go further and try to forecast other types of variables and possible use the results for some interesting
automations in Home Assistant. If doing this, was is important is to evaluate the pertinence of the obtained forecasts.
The hope is that the tools proposed here can be used for that purpose.
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CHAPTER

SIX

EXAMPLE CONFIGURATIONS

In this section example configurations are presented as study cases using real data.

6.1 First test system: a simple system with no PV and two deferrable
loads

In this example we will consider a simple system with no PV installation and just two deferrable loads that we want to
optimize their schedule.

For this the following parameters can be added to the secrets.yaml file: solar_forecast_kwp: 0. And also
we will set the PV forecast method to method='solar.forecast'. This is a simple way to just set a vector with
zero values on the PV forecast power, emulating the case where there is no PV installation. The other values on the
configuration file are set to their default values.

6.1.1 Day-ahead optimization

Let’s performa a day-ahead optimization task on this simple system. We want to schedule our two deferrable loads.

For this we use the following command (example using the legacy EMHASS Python module command line):

emhass --action 'dayahead-optim' --config '/home/user/emhass/config_emhass.yaml' --
→˓costfun 'profit'

The retrieved input forecasted powers are shown below:
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Finally, the optimization results are:
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For this system the total value of the obtained cost function is -5.38 EUR.

6.2 A second test system: a 5kW PV installation and two deferrable
loads

Let’s add a 5 kWp solar production with two deferrable loads. No battery is considered for now. The configuration
used is the default configuration proposed with EMHASS.

We will first consider a perfect optimization task, to obtain the optimization results with perfectly know PV production
and load power values for the last week.
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6.2.1 Perfect optimization

Let’s perform a 7-day historical data optimization.

For this we use the following command (example using the legacy EMHASS Python module command line):

emhass --action 'perfect-optim' --config '/home/user/emhass/config_emhass.yaml' --
→˓costfun 'profit'

The retrieved input powers are shown below:

The input load cost and PV production selling prices are presented in the following figure:
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Finally, the optimization results are:

6.2. A second test system: a 5kW PV installation and two deferrable loads 47



emhass, Release 0.8.6

For this 7-day period, the total value of the cost function was -26.23 EUR.

6.2.2 Day-ahead optimization

As with the simple system we will now perform a day-ahead optimization task. We use again the dayahead-optim
action or end point.

The optimization results are:
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For this system the total value of the obtained cost function is -1.56 EUR. We can note the important improvement on
the cost function value whenn adding a PV installation.

6.3 A third test system: a 5kW PV installation, a 5kWh battery and two
deferrable loads

Now we will consider a complet system with PV and added batteries. To add the battery we will set set_use_battery:
true in the optim_conf section of the config_emhass.yaml file.

In this case we want to schedule our deferrable loads but also the battery charge/discharge. We use again the
dayahead-optim action or end point.

The optimization results are:
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The battery state of charge plot is shown below:
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For this system the total value of the obtained cost function is -1.23 EUR, a substantial improvement when adding a
battery.

6.4 Configuration example to pass data at runtime

As we showed in the forecast module section, we can pass our own forecast data using lists of values passed at run-
time using templates. However, it is possible to also pass other data during runtime in order to automate the energy
management.

For example, let’s suppose that for the default configuration with two deferrable loads we want to correlate and control
them to the outside temperature. This will be used to build a list of the total number of hours for each deferrable load
(def_total_hours). In this example the first deferrable load is a water heater and the second is the pool pump.

We will begin by defining a temperature sensor on a 12 hours sliding window using the filter platform for the outside
temperature:

- platform: filter
name: "Outdoor temperature mean over last 12 hours"
entity_id: sensor.temp_air_out
filters:
- filter: time_simple_moving_average

(continues on next page)
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(continued from previous page)

window_size: "12:00"
precision: 0

Then we will use a template sensor to build our list of the total number of hours for each deferrable load:

- platform: template
sensors:
list_operating_hours_of_each_deferrable_load:
value_template: >-
{% if states("sensor.outdoor_temperature_mean_over_last_12_hours") < "10" %}
{{ [5, 0] | list }}

{% elif states("sensor.outdoor_temperature_mean_over_last_12_hours") >= "10"␣
→˓and states("sensor.outdoor_temperature_mean_over_last_12_hours") < "15" %}

{{ [4, 0] | list }}
{% elif states("sensor.outdoor_temperature_mean_over_last_12_hours") >= "15"␣

→˓and states("sensor.outdoor_temperature_mean_over_last_12_hours") < "20" %}
{{ [4, 6] | list }}

{% elif states("sensor.outdoor_temperature_mean_over_last_12_hours") >= "20"␣
→˓and states("sensor.outdoor_temperature_mean_over_last_12_hours") < "25" %}

{{ [3, 9] | list }}
{% else %}
{{ [3, 12] | list }}

{% endif %}

The values for the total number of operating hours were tuned by trial and error throughout a whole year. These values
work fine for a 3000W water heater (the first value of the list) and a 750W pool pump (the second value in the list).

Finally my two shell commands for EMHASS will look like:

shell_command:
dayahead_optim: "curl -i -H \"Content-Type: application/json\" -X POST -d '{\"def_

→˓total_hours\":{{states('sensor.list_operating_hours_of_each_deferrable_load')}}}'␣
→˓http://localhost:5000/action/dayahead-optim"
publish_data: "curl -i -H \"Content-Type: application/json\" -X POST -d '{}' http://

→˓localhost:5000/action/publish-data"

The dedicated automations for these shell commands can be for example:

- alias: EMHASS day-ahead optimization
trigger:
platform: time
at: '05:30:00'

action:
- service: shell_command.dayahead_optim

- alias: EMHASS publish data
trigger:
- minutes: /5
platform: time_pattern

action:
- service: shell_command.publish_data

And as a bonus, an automation can be set to relaunch the optimization task automatically. This is very useful when
restarting Home Assistant and when updating the EMHASS add-on:
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- alias: Relaunch EMHASS tasks after HASS restart
trigger:
- platform: homeassistant
event: start

- platform: state
entity_id: update.emhass_update
to: 'off'
for:
minutes: 10

action:
- service: shell_command.dayahead_optim
- service: notify.sms_free
data_template:
title: EMHASS relaunched optimization
message: Home assistant restarted or the EMHASS add-on was updated and the␣

→˓optimization task was automatically relaunched

6.5 Some real forecast data

The real implementation of EMHASS and its efficiency depends on the quality of the forecasted PV power production
and the house load consumption.

Here is an extract of the PV power production forecast with the default PV forecast method from EMHASS: a web
scarpping of the clearoutside page based on the defined lat/lon location of the system. These are the forecast results of
the GFS model compared with the real PV produced data for a 4 day period.
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CHAPTER

SEVEN

CONFIGURATION FILE

In this section we will explain all the parts of the config_emhass.yaml needed to properly run EMHASS.

We will find three main parts on the configuration file:

• The parameters needed to retrieve data from Home Assistant (retrieve_hass_conf)

• The parameters to define the optimization problem (optim_conf)

• The parameters used to model the system (plant_conf)

7.1 Retrieve HASS data configuration

These are the parameters that we will need to define to retrieve data from Home Assistant. There are no optional
parameters. In the case of a list, an empty list is a valid entry.

• freq: The time step to resample retrieved data from hass. This parameter is given in minutes. It should not
be defined too low or you will run into memory problems when defining the Linear Programming optimization.
Defaults to 30.

• days_to_retrieve: We will retrieve data from now and up to days_to_retrieve days. Defaults to 2.

• var_PV: This is the name of the photovoltaic produced power sensor in Watts from Home Assistant. For example:
‘sensor.power_photovoltaics’.

• var_load: The name of the household power consumption sensor in Watts from Home Assistant. The deferrable
loads that we will want to include in the optimization problem should be substracted from this sensor in HASS.
For example: ‘sensor.power_load_no_var_loads’

• load_negative: Set this parameter to True if the retrived load variable is negative by convention. Defaults to
False.

• set_zero_min: Set this parameter to True to give a special treatment for a minimum value saturation to zero
for power consumption data. Values below zero are replaced by nans. Defaults to True.

• var_replace_zero: The list of retrieved variables that we would want to replace nans (if they exist) with zeros.
For example:

– ‘sensor.power_photovoltaics’

• var_interp: The list of retrieved variables that we would want to interpolate nans values using linear interpo-
lation. For example:

– ‘sensor.power_photovoltaics’

– ‘sensor.power_load_no_var_loads’

• method_ts_round: Set the method for timestamp rounding, options are: first, last and nearest.
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A second part of this section is given by some privacy-sensitive parameters that should be included in a
secrets_emhass.yaml file alongside the config_emhass.yaml file.

The parameters in the secrets_emhass.yaml file are:

• hass_url: The URL to your Home Assistant instance. For example: https://myhass.duckdns.org/

• long_lived_token: A Long-Lived Access Token from the Lovelace profile page.

• time_zone: The time zone of your system. For example: Europe/Paris.

• lat: The latitude. For example: 45.0.

• lon: The longitude. For example: 6.0

• alt: The altitude in meters. For example: 100.0

7.2 Optimization configuration parameters

These are the parameters needed to properly define the optimization problem.

• set_use_battery: Set to True if we should consider an energy storage device such as a Li-Ion battery. Defaults
to False.

• delta_forecast: The number of days for forecasted data. Defaults to 1.

• num_def_loads: Define the number of deferrable loads to consider. Defaults to 2.

• P_deferrable_nom: The nominal power for each deferrable load in Watts. This is a list with a number of
elements consistent with the number of deferrable loads defined before. For example:

– 3000

– 750

• def_total_hours: The total number of hours that each deferrable load should operate. For example:

– 5

– 8

• def_start_timestep: The timestep as from which each deferrable load is allowed to operate (if you don’t
want the deferrable load to use the whole optimization timewindow). If you specify a value of 0 (or negative),
the deferrable load will be optimized as from the beginning of the complete prediction horizon window. For
example:

– 0

– 1

• def_end_timestep: The timestep before which each deferrable load should operate. The deferrable load is not
allowed to operate after the specified timestep. If a value of 0 (or negative) is provided, the deferrable load is
allowed to operate in the complete optimization window). For example:

– 0

– 3

• treat_def_as_semi_cont: Define if we should treat each deferrable load as a semi-continuous variable.
Semi-continuous variables (True) are variables that must take a value that can be either their maximum or min-
imum/zero (for example On = Maximum load, Off = 0 W). Non semi-continuous (which means continuous)
variables (False) can take any values between their maximum and minimum. For example:

– True
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– True

• set_def_constant: Define if we should set each deferrable load as a constant fixed value variable with just
one startup for each optimization task. For example:

– False

– False

• weather_forecast_method: This will define the weather forecast method that will be used. The options are
‘scrapper’ for a scrapping method for weather forecast from clearoutside.com and ‘csv’ to load a CSV file. When
loading a CSV file this will be directly considered as the PV power forecast in Watts. The default CSV file path
that will be used is ‘/data/data_weather_forecast.csv’. Defaults to ‘scrapper’ method.

• load_forecast_method: The load forecast method that will be used. The options are ‘csv’ to load a
CSV file or ‘naive’ for a simple 1-day persistance model. The default CSV file path that will be used is
‘/data/data_load_forecast.csv’. Defaults to ‘naive’.

• load_cost_forecast_method: Define the method that will be used for load cost forecast. The options are
‘hp_hc_periods’ for peak and non-peak hours contracts and ‘csv’ to load custom cost from CSV file. The default
CSV file path that will be used is ‘/data/data_load_cost_forecast.csv’. The following parameters and definitions
are only needed if load_cost_forecast_method=’hp_hc_periods’:

– list_hp_periods: Define a list of peak hour periods for load consumption from the grid. This is useful
if you have a contract with peak and non-peak hours. For example for two peak hour periods:

∗ period_hp_1:

· start: ‘02:54’

· end: ‘15:24’

∗ period_hp_2:

· start: ‘17:24’

· end: ‘20:24’

– load_cost_hp: The cost of the electrical energy from the grid during peak hours in €/kWh. Defaults to
0.1907.

– load_cost_hc: The cost of the electrical energy from the grid during non-peak hours in €/kWh. Defaults
to 0.1419.

• prod_price_forecast_method: Define the method that will be used for PV power production price forecast.
This is the price that is payed by the utility for energy injected to the grid. The options are ‘constant’ for a constant
fixed value or ‘csv’ to load custom price forecast from a CSV file. The default CSV file path that will be used is
‘/data/data_prod_price_forecast.csv’.

• prod_sell_price: The paid price for energy injected to the grid from excedent PV production in €/kWh.
Defaults to 0.065. This parameter is only needed if prod_price_forecast_method=’constant’.

• set_total_pv_sell: Set this parameter to true to consider that all the PV power produced is injected to the
grid. No direct self-consumption. The default is false, for as system with direct self-consumption.

• lp_solver: Set the name of the linear programming solver that will be used. Defaults to ‘COIN_CMD’. The
options are ‘PULP_CBC_CMD’, ‘GLPK_CMD’ and ‘COIN_CMD’.

• lp_solver_path: Set the path to the LP solver. Defaults to ‘/usr/bin/cbc’.

• set_nocharge_from_grid: Set this to true if you want to forbidden to charge the battery from the grid. The
battery will only be charged from excess PV.

• set_nodischarge_to_grid: Set this to true if you want to forbidden to discharge the battery power to the grid.
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• set_battery_dynamic: Set a power dynamic limiting condition to the battery power. This is an additional
constraint on the battery dynamic in power per unit of time, which allows you to set a percentage of the battery
nominal full power as the maximum power allowed for (dis)charge.

• battery_dynamic_max: The maximum positive (for discharge) battery power dynamic. This is the allowed
power variation (in percentage) of battery maximum power per unit of time.

• battery_dynamic_min: The maximum negative (for charge) battery power dynamic. This is the allowed power
variation (in percentage) of battery maximum power per unit of time.

• weight_battery_discharge: An additional weight (currency/ kWh) applied in cost function to battery usage
for discharge. Defaults to 0.00

• weight_battery_charge: An additional weight (currency/ kWh) applied in cost function to battery usage for
charge. Defaults to 0.00

7.3 System configuration parameters

These are the technical parameters of the energy system of the household.

• P_from_grid_max: The maximum power that can be supplied by the utility grid in Watts (consumption). De-
faults to 9000.

• P_to_grid_max: The maximum power that can be supplied to the utility grid in Watts (injection). Defaults to
9000.

We will define the technical parameters of the PV installation. For the modeling task we rely on the PVLib Python
package. For more information see: https://pvlib-python.readthedocs.io/en/stable/ A dedicated webapp will help you
search for your correct PV module and inverter names: https://emhass-pvlib-database.streamlit.app/ If your spe-
cific model is not found in these lists then solution (1) is to pick another model as close as possible as yours in
terms of the nominal power. Solution (2) would be to use SolCast and pass that data directly to emhass as a list
of values from a template. Take a look at this example here: https://emhass.readthedocs.io/en/latest/forecasts.html#
example-using-solcast-forecast-amber-prices

• module_model: The PV module model. For example: ‘CSUN_Eurasia_Energy_Systems_Industry_and_Trade_CSUN295_60M’.
This parameter can be a list of items to enable the simulation of mixed orientation systems, for example one
east-facing array (azimuth=90) and one west-facing array (azimuth=270). When finding the correct model for
your installation remember to replace all the special characters in the model name by ‘_’. The name of the table
column for your device on the webapp will already have the correct naming convention.

• inverter_model: The PV inverter model. For example: ‘Fronius_International_GmbH__Fronius_Primo_5_0_1_208_240__240V_’.
This parameter can be a list of items to enable the simulation of mixed orientation systems, for example one
east-facing array (azimuth=90) and one west-facing array (azimuth=270). When finding the correct model for
your installation remember to replace all the special characters in the model name by ‘_’. The name of the table
column for your device on the webapp will already have the correct naming convention.

• surface_tilt: The tilt angle of your solar panels. Defaults to 30. This parameter can be a list of items to
enable the simulation of mixed orientation systems, for example one east-facing array (azimuth=90) and one
west-facing array (azimuth=270).

• surface_azimuth: The azimuth of your PV installation. Defaults to 205. This parameter can be a list of items
to enable the simulation of mixed orientation systems, for example one east-facing array (azimuth=90) and one
west-facing array (azimuth=270).

• modules_per_string: The number of modules per string. Defaults to 16. This parameter can be a list of items
to enable the simulation of mixed orientation systems, for example one east-facing array (azimuth=90) and one
west-facing array (azimuth=270).
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• strings_per_inverter: The number of used strings per inverter. Defaults to 1. This parameter can be a list
of items to enable the simulation of mixed orientation systems, for example one east-facing array (azimuth=90)
and one west-facing array (azimuth=270).

If your system has a battery (set_use_battery=True), then you should define the following parameters:

• Pd_max: The maximum discharge power in Watts. Defaults to 1000.

• Pc_max: The maximum charge power in Watts. Defaults to 1000.

• eta_disch: The discharge efficiency. Defaults to 0.95.

• eta_ch: The charge efficiency. Defaults to 0.95.

• Enom: The total capacity of the battery stack in Wh. Defaults to 5000.

• SOCmin: The minimun allowable battery state of charge. Defaults to 0.3.

• SOCmax: The maximum allowable battery state of charge. Defaults to 0.9.

• SOCtarget: The desired battery state of charge at the end of each optimization cycle. Defaults to 0.6.
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API REFERENCE

8.1 emhass.command_line module

emhass.command_line.dayahead_forecast_optim(input_data_dict: dict, logger: Logger, save_data_to_file:
bool | None = False, debug: bool | None = False)→
DataFrame

Perform a call to the day-ahead optimization routine.

Parameters

• input_data_dict (dict) – A dictionnary with multiple data used by the action functions

• logger (logging object) – The passed logger object

• save_data_to_file (bool, optional) – Save optimization results to CSV file

• debug (bool, optional) – A debug option useful for unittests

Returns
The output data of the optimization

Return type
pd.DataFrame

emhass.command_line.forecast_model_fit(input_data_dict: dict, logger: Logger, debug: bool | None =
False)→ Tuple[DataFrame, DataFrame, MLForecaster]

Perform a forecast model fit from training data retrieved from Home Assistant.

Parameters

• input_data_dict (dict) – A dictionnary with multiple data used by the action functions

• logger (logging.Logger) – The passed logger object

• debug (Optional[bool], optional) – True to debug, useful for unit testing, defaults to
False

Returns
The DataFrame containing the forecast data results without and with backtest and the mlforecaster
object

Return type
Tuple[pd.DataFrame, pd.DataFrame, mlforecaster]

emhass.command_line.forecast_model_predict(input_data_dict: dict, logger: Logger, use_last_window:
bool | None = True, debug: bool | None = False, mlf:
MLForecaster | None = None)→ DataFrame

Perform a forecast model predict using a previously trained skforecast model.
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Parameters

• input_data_dict (dict) – A dictionnary with multiple data used by the action functions

• logger (logging.Logger) – The passed logger object

• use_last_window (Optional[bool], optional) – True if the ‘last_window’ option
should be used for the custom machine learning forecast model. The ‘last_window=True’
means that the data that will be used to generate the new forecast will be freshly retrieved
from Home Assistant. This data is needed because the forecast model is an auto-regressive
model with lags. If ‘False’ then the data using during the model train is used. Defaults to
True

• debug (Optional[bool], optional) – True to debug, useful for unit testing, defaults to
False

• mlf (Optional[mlforecaster], optional) – The ‘mlforecaster’ object previously
trained. This is mainly used for debug and unit testing. In production the actual model
will be read from a saved pickle file. Defaults to None

Returns
The DataFrame containing the forecast prediction data

Return type
pd.DataFrame

emhass.command_line.forecast_model_tune(input_data_dict: dict, logger: Logger, debug: bool | None =
False, mlf: MLForecaster | None = None)→ Tuple[DataFrame,
MLForecaster]

Tune a forecast model hyperparameters using bayesian optimization.

Parameters

• input_data_dict (dict) – A dictionnary with multiple data used by the action functions

• logger (logging.Logger) – The passed logger object

• debug (Optional[bool], optional) – True to debug, useful for unit testing, defaults to
False

• mlf (Optional[mlforecaster], optional) – The ‘mlforecaster’ object previously
trained. This is mainly used for debug and unit testing. In production the actual model
will be read from a saved pickle file. Defaults to None

Returns
The DataFrame containing the forecast data results using the optimized model

Return type
pd.DataFrame

emhass.command_line.main()

Define the main command line entry function.

This function may take several arguments as inputs. You can type emhass –help to see the list of options:

• action: Set the desired action, options are: perfect-optim, dayahead-optim, naive-mpc-optim, publish-data,
forecast-model-fit, forecast-model-predict, forecast-model-tune

• config: Define path to the config.yaml file

• costfun: Define the type of cost function, options are: profit, cost, self-consumption

• log2file: Define if we should log to a file or not
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• params: Configuration parameters passed from data/options.json if using the add-on

• runtimeparams: Pass runtime optimization parameters as dictionnary

• debug: Use True for testing purposes

emhass.command_line.naive_mpc_optim(input_data_dict: dict, logger: Logger, save_data_to_file: bool | None
= False, debug: bool | None = False)→ DataFrame

Perform a call to the naive Model Predictive Controller optimization routine.

Parameters

• input_data_dict (dict) – A dictionnary with multiple data used by the action functions

• logger (logging object) – The passed logger object

• save_data_to_file (bool, optional) – Save optimization results to CSV file

• debug (bool, optional) – A debug option useful for unittests

Returns
The output data of the optimization

Return type
pd.DataFrame

emhass.command_line.perfect_forecast_optim(input_data_dict: dict, logger: Logger, save_data_to_file:
bool | None = True, debug: bool | None = False)→
DataFrame

Perform a call to the perfect forecast optimization routine.

Parameters

• input_data_dict (dict) – A dictionnary with multiple data used by the action functions

• logger (logging object) – The passed logger object

• save_data_to_file (bool, optional) – Save optimization results to CSV file

• debug (bool, optional) – A debug option useful for unittests

Returns
The output data of the optimization

Return type
pd.DataFrame

emhass.command_line.publish_data(input_data_dict: dict, logger: Logger, save_data_to_file: bool | None =
False, opt_res_latest: DataFrame | None = None)→ DataFrame

Publish the data obtained from the optimization results.

Parameters

• input_data_dict (dict) – A dictionnary with multiple data used by the action functions

• logger (logging object) – The passed logger object

• save_data_to_file (bool, optional) – If True we will read data from optimization
results in dayahead CSV file

Returns
The output data of the optimization readed from a CSV file in the data folder

Return type
pd.DataFrame
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emhass.command_line.set_input_data_dict(emhass_conf: dict, costfun: str, params: str, runtimeparams:
str, set_type: str, logger: Logger, get_data_from_file: bool |
None = False)→ dict

Set up some of the data needed for the different actions.

Parameters

• emhass_conf (dict) – Dictionary containing the needed emhass paths

• costfun (str) – The type of cost function to use for optimization problem

• params (str) – Configuration parameters passed from data/options.json

• runtimeparams (str) – Runtime optimization parameters passed as a dictionary

• set_type (str) – Set the type of setup based on following type of optimization

• logger (logging object) – The passed logger object

• get_data_from_file (bool, optional) – Use data from saved CSV file (useful for de-
bug)

Returns
A dictionnary with multiple data used by the action functions

Return type
dict

8.2 emhass.forecast module

class emhass.forecast.Forecast(retrieve_hass_conf: dict, optim_conf: dict, plant_conf: dict, params: str,
emhass_conf: dict, logger: Logger, opt_time_delta: int | None = 24,
get_data_from_file: bool | None = False)

Bases: object

Generate weather, load and costs forecasts needed as inputs to the optimization.

In EMHASS we have basically 4 forecasts to deal with:

• PV power production forecast (internally based on the weather forecast and the characteristics of your PV
plant). This is given in Watts.

• Load power forecast: how much power your house will demand on the next 24h. This is given in Watts.

• PV production selling price forecast: at what price are you selling your excess PV production on the next
24h. This is given in EUR/kWh.

• Load cost forecast: the price of the energy from the grid on the next 24h. This is given in EUR/kWh.

There are methods that are generalized to the 4 forecast needed. For all there forecasts it is possible to pass the
data either as a passed list of values or by reading from a CSV file. With these methods it is then possible to use
data from external forecast providers.

Then there are the methods that are specific to each type of forecast and that proposed forecast treated and
generated internally by this EMHASS forecast class. For the weather forecast a first method (scrapper) uses
a scrapping to the ClearOutside webpage which proposes detailed forecasts based on Lat/Lon locations. This
method seems stable but as with any scrape method it will fail if any changes are made to the webpage API.
Another method (solcast) is using the SolCast PV production forecast service. A final method (solar.forecast)
is using another external service: Solar.Forecast, for which just the nominal PV peak installed power should be
provided. Search the forecast section on the documentation for examples on how to implement these different
methods.
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The get_power_from_weather method is proposed here to convert from irradiance data to electrical power. The
PVLib module is used to model the PV plant.

The specific methods for the load forecast are a first method (naive) that uses a naive approach, also called
persistance. It simply assumes that the forecast for a future period will be equal to the observed values in a past
period. The past period is controlled using parameter delta_forecast. A second method (mlforecaster) uses an
internal custom forecasting model using machine learning. There is a section in the documentation explaining
how to use this method.

Note: This custom machine learning model is introduced from v0.4.0. EMHASS proposed this new mlforecaster
class with fit, predict and tune methods. Only the predict method is used here to generate new forecasts, but it is
necessary to previously fit a forecaster model and it is a good idea to optimize the model hyperparameters using
the tune method. See the dedicated section in the documentation for more help.

For the PV production selling price and Load cost forecasts the privileged method is a direct read from a user
provided list of values. The list should be passed as a runtime parameter during the curl to the EMHASS API.

I reading from a CSV file, it should contain no header and the timestamped data should have the following format:

2021-04-29 00:00:00+00:00,287.07

2021-04-29 00:30:00+00:00,274.27

2021-04-29 01:00:00+00:00,243.38

. . .

The data columns in these files will correspond to the data in the units expected for each forecasting method.

cloud_cover_to_irradiance(cloud_cover: Series, offset: int | None = 35)→ DataFrame
Estimates irradiance from cloud cover in the following steps.

1. Determine clear sky GHI using Ineichen model and climatological turbidity.

2. Estimate cloudy sky GHI using a function of cloud_cover

3. Estimate cloudy sky DNI using the DISC model.

4. Calculate DHI from DNI and GHI.

(This function was copied and modified from PVLib)

Parameters

• cloud_cover (pd.Series) – Cloud cover in %.

• offset (Optional[int], optional) – Determines the minimum GHI., defaults to 35

Returns
Estimated GHI, DNI, and DHI.

Return type
pd.DataFrame

get_forecast_days_csv(timedelta_days: int | None = 1)→ date_range
Get the date range vector of forecast dates that will be used when loading a CSV file.

Returns
The forecast dates vector

Return type
pd.date_range
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get_forecast_out_from_csv_or_list(df_final: DataFrame, forecast_dates_csv: date_range, csv_path:
str, data_list: list | None = None, list_and_perfect: bool | None =
False)→ DataFrame

Get the forecast data as a DataFrame from a CSV file.

The data contained in the CSV file should be a 24h forecast with the same frequency as the main ‘freq’
parameter in the configuration file. The timestamp will not be used and a new DateTimeIndex is generated
to fit the timestamp index of the input data in ‘df_final’.

Parameters

• df_final (pd.DataFrame) – The DataFrame containing the input data.

• forecast_dates_csv (pd.date_range) – The forecast dates vector

• csv_path (str) – The path to the CSV file

Returns
The data from the CSV file

Return type
pd.DataFrame

get_load_cost_forecast(df_final: DataFrame, method: str | None = 'hp_hc_periods', csv_path: str | None
= 'data_load_cost_forecast.csv', list_and_perfect: bool | None = False)→
DataFrame

Get the unit cost for the load consumption based on multiple tariff periods. This is the cost of the energy
from the utility in a vector sampled at the fixed freq value.

Parameters

• df_final (pd.DataFrame) – The DataFrame containing the input data.

• method (str, optional) – The method to be used to generate load cost forecast, the
options are ‘hp_hc_periods’ for peak and non-peak hours contractsand ‘csv’ to load a CSV
file, defaults to ‘hp_hc_periods’

• csv_path (str, optional) – The path to the CSV file used when method = ‘csv’, de-
faults to “data_load_cost_forecast.csv”

Returns
The input DataFrame with one additionnal column appended containing the load cost for each
time observation.

Return type
pd.DataFrame

get_load_forecast(days_min_load_forecast: int | None = 3, method: str | None = 'naive', csv_path: str |
None = 'data_load_forecast.csv', set_mix_forecast: bool | None = False, df_now:
~pandas.core.frame.DataFrame | None = Empty DataFrame Columns: [] Index: [],
use_last_window: bool | None = True, mlf:
~emhass.machine_learning_forecaster.MLForecaster | None = None, debug: bool |
None = False)→ Series

Get and generate the load forecast data.

Parameters

• days_min_load_forecast (int, optional) – The number of last days to retrieve that
will be used to generate a naive forecast, defaults to 3
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• method (str, optional) – The method to be used to generate load forecast, the options
are ‘naive’ for a persistance model, ‘mlforecaster’ for using a custom previously fitted ma-
chine learning model, ‘csv’ to read the forecast from a CSV file and ‘list’ to use data directly
passed at runtime as a list of values. Defaults to ‘naive’.

• csv_path (str, optional) – The path to the CSV file used when method = ‘csv’, de-
faults to “/data/data_load_forecast.csv”

• set_mix_forecast (Bool, optional) – Use a mixed forcast strategy to integra
now/current values.

• df_now (pd.DataFrame, optional) – The DataFrame containing the now/current data.

• use_last_window (Bool, optional) – True if the ‘last_window’ option should be used
for the custom machine learning forecast model. The ‘last_window=True’ means that the
data that will be used to generate the new forecast will be freshly retrieved from Home
Assistant. This data is needed because the forecast model is an auto-regressive model with
lags. If ‘False’ then the data using during the model train is used.

• mlf (mlforecaster, optional) – The ‘mlforecaster’ object previously trained. This is
mainly used for debug and unit testing. In production the actual model will be read from a
saved pickle file.

• debug (Bool, optional) – The DataFrame containing the now/current data.

Returns
The DataFrame containing the electrical load power in Watts

Return type
pd.DataFrame

static get_mix_forecast(df_now: DataFrame, df_forecast: DataFrame, alpha: float, beta: float, col:
str)→ DataFrame

A simple correction method for forecasted data using the current real values of a variable.

Parameters

• df_now (pd.DataFrame) – The DataFrame containing the current/real values

• df_forecast (pd.DataFrame) – The DataFrame containing the forecast data

• alpha (float) – A weight for the forecast data side

• beta (float) – A weight for the current/real values sied

• col (str) – The column variable name

Returns
The output DataFrame with the corrected values

Return type
pd.DataFrame

get_power_from_weather(df_weather: ~pandas.core.frame.DataFrame, set_mix_forecast: bool | None =
False, df_now: ~pandas.core.frame.DataFrame | None = Empty DataFrame
Columns: [] Index: [])→ Series

Convert wheater forecast data into electrical power.

Parameters

• df_weather (pd.DataFrame) – The DataFrame containing the weather forecasted data.
This DF should be generated by the ‘get_weather_forecast’ method or at least contain the
same columns names filled with proper data.
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• set_mix_forecast (Bool, optional) – Use a mixed forcast strategy to integra
now/current values.

• df_now (pd.DataFrame) – The DataFrame containing the now/current data.

Returns
The DataFrame containing the electrical power in Watts

Return type
pd.DataFrame

get_prod_price_forecast(df_final: DataFrame, method: str | None = 'constant', csv_path: str | None =
'data_prod_price_forecast.csv', list_and_perfect: bool | None = False)→
DataFrame

Get the unit power production price for the energy injected to the grid.This is the price of the energy injected
to the utility in a vector sampled at the fixed freq value.

Parameters

• df_input_data (pd.DataFrame) – The DataFrame containing all the input data retrieved
from hass

• method (str, optional) – The method to be used to generate the production price fore-
cast, the options are ‘constant’ for a fixed constant value and ‘csv’to load a CSV file, defaults
to ‘constant’

• csv_path (str, optional) – The path to the CSV file used when method = ‘csv’, de-
faults to “/data/data_load_cost_forecast.csv”

Returns
The input DataFrame with one additionnal column appended containing the power production
price for each time observation.

Return type
pd.DataFrame

get_weather_forecast(method: str | None = 'scrapper', csv_path: str | None =
'data_weather_forecast.csv')→ DataFrame

Get and generate weather forecast data.

Parameters
method (str, optional) – The desired method, options are ‘scrapper’, ‘csv’, ‘list’, ‘solcast’
and ‘solar.forecast’. Defaults to ‘scrapper’.

Returns
The DataFrame containing the forecasted data

Return type
pd.DataFrame
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8.3 emhass.machine_learning_forecaster module

class emhass.machine_learning_forecaster.MLForecaster(data: DataFrame, model_type: str,
var_model: str, sklearn_model: str,
num_lags: int, emhass_conf: dict, logger:
Logger)

Bases: object

A forecaster class using machine learning models with auto-regressive approach and featuresbased on timestamp
information (hour, day, week, etc).

This class uses the skforecast module and the machine learning models are from scikit-learn.

It exposes three main methods:

• fit: to train a model with the passed data.

• predict: to obtain a forecast from a pre-trained model.

• tune: to optimize the models hyperparameters using bayesian optimization.

static add_date_features(data: DataFrame)→ DataFrame
Add date features from the input DataFrame timestamp

Parameters
data (pd.DataFrame) – The input DataFrame

Returns
The DataFrame with the added features

Return type
pd.DataFrame

fit(split_date_delta: str | None = '48h', perform_backtest: bool | None = False)→ Tuple[DataFrame,
DataFrame]
The fit method to train the ML model.

Parameters

• split_date_delta (Optional[str], optional) – The delta from now to
split_date_delta that will be used as the test period to evaluate the model, defaults
to ‘48h’

• perform_backtest (Optional[bool], optional) – If True then a back testing routine
is performed to evaluate the performance of the model on the complete train set, defaults
to False

Returns
The DataFrame containing the forecast data results without and with backtest

Return type
Tuple[pd.DataFrame, pd.DataFrame]

static generate_exog(data_last_window, periods, var_name)
Generate the exogenous data for future timestamps.

static neg_r2_score(y_true, y_pred)
The negative of the r2 score.
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predict(data_last_window: DataFrame | None = None)→ Series
The predict method to generate forecasts from a previously fitted ML model.

Parameters
data_last_window (Optional[pd.DataFrame], optional) – The data that will be
used to generate the new forecast, this will be freshly retrieved from Home Assistant. This
data is needed because the forecast model is an auto-regressive model with lags. If not passed
then the data used during the model train is used, defaults to None

Returns
A pandas series containing the generated forecasts.

Return type
pd.Series

tune(debug: bool | None = False)→ DataFrame
Tuning a previously fitted model using bayesian optimization.

Parameters
debug (Optional[bool], optional) – Set to True for testing and faster optimizations,
defaults to False

Returns
The DataFrame with the forecasts using the optimized model.

Return type
pd.DataFrame

8.4 emhass.optimization module

class emhass.optimization.Optimization(retrieve_hass_conf: dict, optim_conf: dict, plant_conf: dict,
var_load_cost: str, var_prod_price: str, costfun: str,
emhass_conf: dict, logger: Logger, opt_time_delta: int | None =
24)

Bases: object

Optimize the deferrable load and battery energy dispatch problem using the linear programming optimization
technique. All equipement equations, including the battery equations are hence transformed in a linear form.

This class methods are:

• perform_optimization

• perform_perfect_forecast_optim

• perform_dayahead_forecast_optim

• perform_naive_mpc_optim

perform_dayahead_forecast_optim(df_input_data: DataFrame, P_PV: Series, P_load: Series)→
DataFrame

Perform a day-ahead optimization task using real forecast data. This type of optimization is intented to be
launched once a day.

Parameters

• df_input_data (pandas.DataFrame) – A DataFrame containing all the input data used
for the optimization, notably the unit load cost for power consumption.

• P_PV (pandas.DataFrame) – The forecasted PV power production.
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• P_load (pandas.DataFrame) – The forecasted Load power consumption. This power
should not include the power from the deferrable load that we want to find.

Returns
opt_res: A DataFrame containing the optimization results

Return type
pandas.DataFrame

perform_naive_mpc_optim(df_input_data: DataFrame, P_PV: Series, P_load: Series, prediction_horizon:
int, soc_init: float | None = None, soc_final: float | None = None,
def_total_hours: list | None = None, def_start_timestep: list | None = None,
def_end_timestep: list | None = None)→ DataFrame

Perform a naive approach to a Model Predictive Control (MPC). This implementaion is naive because we
are not using the formal formulation of a MPC. Only the sense of a receiding horizon is considered here.
This optimization is more suitable for higher optimization frequency, ex: 5min.

Parameters

• df_input_data (pandas.DataFrame) – A DataFrame containing all the input data used
for the optimization, notably the unit load cost for power consumption.

• P_PV (pandas.DataFrame) – The forecasted PV power production.

• P_load (pandas.DataFrame) – The forecasted Load power consumption. This power
should not include the power from the deferrable load that we want to find.

• prediction_horizon (int) – The prediction horizon of the MPC controller in number
of optimization time steps.

• soc_init (float) – The initial battery SOC for the optimization. This parameter is op-
tional, if not given soc_init = soc_final = soc_target from the configuration file.

• soc_final – The final battery SOC for the optimization. This parameter is optional, if not
given soc_init = soc_final = soc_target from the configuration file.

• def_total_hours (list) – The functioning hours for this iteration for each deferrable
load. (For continuous deferrable loads: functioning hours at nominal power)

• def_start_timestep (list) – The timestep as from which each deferrable load is al-
lowed to operate.

• def_end_timestep (list) – The timestep before which each deferrable load should op-
erate.

Returns
opt_res: A DataFrame containing the optimization results

Return type
pandas.DataFrame

perform_optimization(data_opt: DataFrame, P_PV: array, P_load: array, unit_load_cost: array,
unit_prod_price: array, soc_init: float | None = None, soc_final: float | None =
None, def_total_hours: list | None = None, def_start_timestep: list | None = None,
def_end_timestep: list | None = None, debug: bool | None = False)→ DataFrame

Perform the actual optimization using linear programming (LP).

Parameters

• data_tp (pd.DataFrame) – A DataFrame containing the input data. The results of the
optimization will be appended (decision variables, cost function values, etc)
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• P_PV (numpy.array) – The photovoltaic power values. This can be real historical values
or forecasted values.

• P_load (np.array) – The load power consumption values

• unit_load_cost (np.array) – The cost of power consumption for each unit of time.
This is the cost of the energy from the utility in a vector sampled at the fixed freq value

• unit_prod_price (np.array) – The price of power injected to the grid each unit of time.
This is the price of the energy injected to the utility in a vector sampled at the fixed freq
value.

• soc_init (float) – The initial battery SOC for the optimization. This parameter is op-
tional, if not given soc_init = soc_final = soc_target from the configuration file.

• soc_final – The final battery SOC for the optimization. This parameter is optional, if not
given soc_init = soc_final = soc_target from the configuration file.

• def_total_hours (list) – The functioning hours for this iteration for each deferrable
load. (For continuous deferrable loads: functioning hours at nominal power)

• def_start_timestep (list) – The timestep as from which each deferrable load is al-
lowed to operate.

• def_end_timestep (list) – The timestep before which each deferrable load should op-
erate.

Returns
The input DataFrame with all the different results from the optimization appended

Return type
pd.DataFrame

perform_perfect_forecast_optim(df_input_data: DataFrame, days_list: date_range)→ DataFrame
Perform an optimization on historical data (perfectly known PV production).

Parameters

• df_input_data (pandas.DataFrame) – A DataFrame containing all the input data used
for the optimization, notably photovoltaics and load consumption powers.

• days_list (list) – A list of the days of data that will be retrieved from hass and used for
the optimization task. We will retrieve data from now and up to days_to_retrieve days

Returns
opt_res: A DataFrame containing the optimization results

Return type
pandas.DataFrame

static validate_def_timewindow(start: int, end: int, min_steps: int, window: int)→ Tuple[int, int, str]
Helper function to validate (and if necessary: correct) the defined optimization window of a deferrable
load.

Parameters

• start (int) – Start timestep of the optimization window of the deferrable load

• end (int) – End timestep of the optimization window of the deferrable load

• min_steps (int) – Minimal timesteps during which the load should operate (at nominal
power)

• window (int) – Total number of timesteps in the optimization window
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Returns
start_validated: Validated start timestep of the optimization window of the deferrable load

Return type
int

Returns
end_validated: Validated end timestep of the optimization window of the deferrable load

Return type
int

Returns
warning: Any warning information to be returned from the validation steps

Return type
string

8.5 emhass.retrieve_hass module

class emhass.retrieve_hass.RetrieveHass(hass_url: str, long_lived_token: str, freq: Timedelta, time_zone:
timezone, params: str, emhass_conf: dict, logger: Logger,
get_data_from_file: bool | None = False)

Bases: object

Retrieve data from Home Assistant using the restful API.

This class allows the user to retrieve data from a Home Assistant instance using the provided restful API (https:
//developers.home-assistant.io/docs/api/rest/)

This class methods are:

• get_data: to retrieve the actual data from hass

• prepare_data: to apply some data treatment in preparation for the optimization task

• post_data: Post passed data to hass

static get_attr_data_dict(data_df: DataFrame, idx: int, entity_id: str, unit_of_measurement: str,
friendly_name: str, list_name: str, state: float)→ dict

get_data(days_list: date_range, var_list: list, minimal_response: bool | None = False,
significant_changes_only: bool | None = False, test_url: str | None = 'empty')→ None

Retrieve the actual data from hass.

Parameters

• days_list (pandas.date_range) – A list of days to retrieve. The ISO format should be
used and the timezone is UTC. The frequency of the data_range should be freq=’D’

• var_list (list) – The list of variables to retrive from hass. These should be the ex-
act name of the sensor in Home Assistant. For example: [‘sensor.home_load’, ‘sen-
sor.home_pv’]

• minimal_response (bool, optional) – Retrieve a minimal response using the hass
restful API, defaults to False

• significant_changes_only (bool, optional) – Retrieve significant changes only
using the hass restful API, defaults to False
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Returns
The DataFrame populated with the retrieved data from hass

Return type
pandas.DataFrame

Warning: The minimal_response and significant_changes_only options are experimental

post_data(data_df: DataFrame, idx: int, entity_id: str, unit_of_measurement: str, friendly_name: str,
type_var: str, from_mlforecaster: bool | None = False, publish_prefix: str | None = '')→ None

Post passed data to hass.

Parameters

• data_df (pd.DataFrame) – The DataFrame containing the data that will be posted to
hass. This should be a one columns DF or a series.

• idx (int) – The int index of the location of the data within the passed DataFrame. We will
post just one value at a time.

• entity_id (str) – The unique entity_id of the sensor in hass.

• unit_of_measurement (str) – The units of the sensor.

• friendly_name (str) – The friendly name that will be used in the hass frontend.

• type_var (str) – A variable to indicate the type of variable: power, SOC, etc.

• publish_prefix (str, optional) – A common prefix for all published data entity_id.

prepare_data(var_load: str, load_negative: bool | None = False, set_zero_min: bool | None = True,
var_replace_zero: list | None = None, var_interp: list | None = None)→ None

Apply some data treatment in preparation for the optimization task.

Parameters

• var_load (str) – The name of the variable for the household load consumption.

• load_negative (bool, optional) – Set to True if the retrived load variable is negative
by convention, defaults to False

• set_zero_min (bool, optional) – A special treatment for a minimum value saturation
to zero. Values below zero are replaced by nans, defaults to True

• var_replace_zero (list, optional) – A list of retrived variables that we would want
to replace nans with zeros, defaults to None

• var_interp (list, optional) – A list of retrived variables that we would want to in-
terpolate nan values using linear interpolation, defaults to None

Returns
The DataFrame populated with the retrieved data from hass and after the data treatment

Return type
pandas.DataFrame
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8.6 emhass.utils module

emhass.utils.build_params(params: dict, params_secrets: dict, options: dict, addon: int, logger: Logger)→
dict

Build the main params dictionary from the loaded options.json when using the add-on.

Parameters

• params (dict) – The main params dictionary

• params_secrets (dict) – The dictionary containing the secret protected variables

• options (dict) – The load dictionary from options.json

• addon (int) – A “bool” to select if we are using the add-on

• logger (logging.Logger) – The logger object

Returns
The builded dictionary

Return type
dict

emhass.utils.get_days_list(days_to_retrieve: int)→ date_range
Get list of past days from today to days_to_retrieve.

Parameters
days_to_retrieve (int) – Total number of days to retrieve from the past

Returns
The list of days

Return type
pd.date_range

emhass.utils.get_forecast_dates(freq: int, delta_forecast: int, timedelta_days: int | None = 0)→
DatetimeIndex

Get the date_range list of the needed future dates using the delta_forecast parameter.

Parameters

• freq (int) – Optimization time step.

• delta_forecast (int) – Number of days to forecast in the future to be used for the opti-
mization.

• timedelta_days (Optional[int], optional) – Number of truncated days needed for
each optimization iteration, defaults to 0

Returns
A list of future forecast dates.

Return type
pd.core.indexes.datetimes.DatetimeIndex

emhass.utils.get_injection_dict(df: DataFrame, plot_size: int | None = 1366)→ dict
Build a dictionary with graphs and tables for the webui.

Parameters

• df (pd.DataFrame) – The optimization result DataFrame
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• plot_size (Optional[int], optional) – Size of the plot figure in pixels, defaults to
1366

Returns
A dictionary containing the graphs and tables in html format

Return type
dict

emhass.utils.get_injection_dict_forecast_model_fit(df_fit_pred: DataFrame, mlf: MLForecaster)→
dict

Build a dictionary with graphs and tables for the webui for special MLF fit case.

Parameters

• df_fit_pred (pd.DataFrame) – The fit result DataFrame

• mlf (MLForecaster) – The MLForecaster object

Returns
A dictionary containing the graphs and tables in html format

Return type
dict

emhass.utils.get_injection_dict_forecast_model_tune(df_pred_optim: DataFrame, mlf: MLForecaster)
→ dict

Build a dictionary with graphs and tables for the webui for special MLF tune case.

Parameters

• df_pred_optim (pd.DataFrame) – The tune result DataFrame

• mlf (MLForecaster) – The MLForecaster object

Returns
A dictionary containing the graphs and tables in html format

Return type
dict

emhass.utils.get_logger(fun_name: str, emhass_conf: dict, save_to_file: bool | None = True, logging_level:
str | None = 'DEBUG')→ Tuple[Logger, StreamHandler]

Create a simple logger object.

Parameters

• fun_name (str) – The Python function object name where the logger will be used

• emhass_conf (dict) – Dictionary containing the needed emhass paths

• save_to_file (bool, optional) – Write log to a file, defaults to True

Returns
The logger object and the handler

Return type
object

emhass.utils.get_root(file: str, num_parent: int | None = 3)→ str
Get the root absolute path of the working directory.

Parameters

• file – The passed file path with __file__
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• num_parent (int, optional) – The number of parents levels up to desired root folder

Returns
The root path

Return type
str

emhass.utils.get_yaml_parse(emhass_conf: dict, use_secrets: bool | None = True, params: str | None =
None)→ Tuple[dict, dict, dict]

Perform parsing of the config.yaml file.

Parameters

• emhass_conf (dict) – Dictionary containing the needed emhass paths

• use_secrets (bool, optional) – Indicate if we should use a secrets file or not. Set to
False for unit tests.

• params (str) – Configuration parameters passed from data/options.json

Returns
A tuple with the dictionaries containing the parsed data

Return type
tuple(dict)

emhass.utils.set_df_index_freq(df: DataFrame)→ DataFrame
Set the freq of a DataFrame DateTimeIndex.

Parameters
df (pd.DataFrame) – Input DataFrame

Returns
Input DataFrame with freq defined

Return type
pd.DataFrame

emhass.utils.treat_runtimeparams(runtimeparams: str, params: str, retrieve_hass_conf: dict, optim_conf:
dict, plant_conf: dict, set_type: str, logger: Logger)→ Tuple[str, dict]

Treat the passed optimization runtime parameters.

Parameters

• runtimeparams (str) – Json string containing the runtime parameters dict.

• params (str) – Configuration parameters passed from data/options.json

• retrieve_hass_conf (dict) – Container for data retrieving parameters.

• optim_conf (dict) – Container for optimization parameters.

• plant_conf (dict) – Container for technical plant parameters.

• set_type (str) – The type of action to be performed.

• logger (logging.Logger) – The logger object.

Returns
Returning the params and optimization parameter container.

Return type
Tuple[str, dict]
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CHAPTER

NINE

EMHASS DEVELOPMENT

There are multiple different approaches to developing EMHASS.
The choice depends on EMHASS mode (standalone/add-on) and preference (Python venv/DevContainer/Docker).
Below are some development workflow examples:
Note: It is preferred to run both addon mode, standalone mode and unitest once before submitting and pull request.

9.1 Step 1 - Fork

With your preferred Git tool of choice:
Fork the EMHASS github repository into your own account, then clone the forked repository into your local develop-
ment platform. (ie. PC or Codespace)

9.2 Step 2 - Develop

To develop and test code choose one of the following methods:

9.2.1 Method 1 - Python Virtual Environment

We can use python virtual environments to build, develop and test/unitest the code. This method works well with
standalone mode.

confirm terminal is in the root emhass directory before starting

Install requirements

python3 -m pip install -r requirements.txt #if arm try setting --extra-index-url=https://
→˓www.piwheels.org/simple

Create a developer environment:

python3 -m venv .venv

Activate the environment:

• linux:

source .venv/bin/activate

• windows:
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.venv\Scripts\activate.bat

An IDE like VSCode should automatically catch that a new virtual env was created.

Install the emhass package in editable mode:

python3 -m pip install -e .

Set paths with environment variables:

• Linux

export OPTIONS_PATH="${PWD}/options.json" && export USE_OPTIONS="True" ##optional␣
→˓to test options.json
export CONFIG_PATH="${PWD}/config_emhass.yaml"
export SECRETS_PATH="${PWD}/secrets_emhass.yaml"
export DATA_PATH="${PWD}/data/"

• windows

set "OPTIONS_PATH=%cd%/options.json" & :: optional to test options.json
set "USE_OPTIONS=True" & :: optional to test options.json
set "CONFIG_PATH=%cd%/config_emhass.yaml"
set "SECRETS_PATH=%cd%/secrets_emhass.yaml"
set "DATA_PATH=%cd%/data/"

Make sure secrets_emhass.yaml has been created and set. Copy secrets_emhass(example).yaml for an ex-
ample.

Run EMHASS

python3 src/emhass/web_server.py

Run unitests

python3 -m unitest -v -RP -s ./tests -p 'test_*.py'

unitest will need to be installed prior

9.2.2 Method 2: VS-Code Debug and Run via DevContainer

In VS-Code, you can run a Docker DevContainer to set up a virtual environment. There you can edit and test EMHASS.

The recommended steps to run are:

• Open forked root (emhass) folder inside of VS-Code

• VS-Code will ask if you want to run in a dev-container, say yes (Dev Container must be set up first). (Shortcut:
F1 > Dev Containers: Rebuild and Reopen in Container)

• Edit some code. . .

• Compile emhass by pressing control+shift+p > Tasks: Run Task > EMHASS Install. This has been set
up in the tasks.json file. - Before run & debug, re-run EMHASS Install task every time a change has been made
to emhass.

• Launch and debug the application via selecting the Run and Debug tab /Ctrl+Shift+D > EMHASS run Addon.
This has been set up in the Launch.json .
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– You will need to modify the EMHASS_URL (http://HAIPHERE:8123/) and EMHASS_KEY (PLACEKEYHERE)
inside of Launch.json that matches your HA environment before running.

– If you want to change your parameters, you can edit options.json file before launch.

– you can also choose to run EMHASS run instead of EMHASS run Addon. This acts more like standalone
mode an removes the use of options.json. (user sets parameters in config_emhass.yaml instead)

• You can run all the unitests by heading to the Testing tab on the left hand side.
This is recommended before creating a pull request.

9.2.3 Method 3 - Docker Virtual Environment

With Docker, you can test EMHASS in both standalone and add-on mode via modifying the build argument:
build_version with values: standalone, addon-pip, addon-git, addon-local.
Since emhass-add-on is using the same docker base, this method is good to test the add-on functionality of your code.
(addon-local)

Depending on your choice of running standalone or addon, docker run will require different passed vari-
ables/arguments to function. See following examples:

Note: Make sure your terminal is in the root emhass directory before running the docker build.

Docker run add-on via with local files:

addon-local copies the local emhass files (from your device) to compile and run in addon mode.

docker build -t emhass/docker --build-arg build_version=addon-local .

docker run -it -p 5000:5000 --name emhass-container -e LAT="45.83" -e LON="6.86" -e ALT=
→˓"4807.8" -e TIME_ZONE="Europe/Paris" emhass/docker --url YOURHAURLHERE --key␣
→˓YOURHAKEYHERE

Note:

• addon mode can have secret parameters passed in at run via variables -e, arguments (--key,--url) or via
secrets_emhass.yaml with a volume mount

• on file change, you will need to re-build and re-run the Docker image/container in order for the change to take
effect. (excluding volume mounted configs)

• if you are planning to modify the configs: options.json, secrets_emhass.yaml or config_emhass.yaml, you can
volume mount them with -v:

docker build -t emhass/docker --build-arg build_version=addon-local .

docker run -it -p 5000:5000 --name emhass-container -v $(pwd)/options.json:/app/
→˓options.json -e LAT="45.83" -e LON="6.86" -e ALT="4807.8" -e TIME_ZONE="Europe/
→˓Paris" emhass/docker --url YOURHAURLHERE --key YOURHAKEYHERE

This allows the editing of config files without re-building the Docker Image. On config change, restart the
container to take effect:

docker stop emhass-container

docker start emhass-container
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Docker run Standalone with local files:

standalone copies the local emhass files (from your device) to compile and run in standalone mode.

docker build -t emhass/docker --build-arg build_version=standalone .

docker run -it -p 5000:5000 --name emhass-container -v $(pwd)/config_emhass.yaml:/app/
→˓config_emhass.yaml -v $(pwd)/secrets_emhass.yaml:/app/secrets_emhass.yaml emhass/docker

Standalone mode can use secrets_emhass.yaml to pass secret parameters (overriding secrets provided by
ARG/ENV’s). Copy secrets_emhass(example).yaml for an example.

Docker run add-on with Git or pip:

If you would like to test with the current production/master versions of emhass, you can do so via pip or Git. With Git,
you can also specify other repos/branches outside of davidusb-geek/emhass:master.

addon-pip will be the closest environment to the production emhass-add-on.
However, both come with the disadvantage of not easily being able to edit the emhass package itself.

Docker run add-on git

docker build -t emhass/docker --build-arg build_version=addon-git .

docker run -it -p 5000:5000 --name emhass-container -e LAT="45.83" -e LON="6.86" -e ALT=
→˓"4807.8" -e TIME_ZONE="Europe/Paris" -v $(pwd)/options.json:/app/options.json emhass/
→˓docker --url YOURHAURLHERE --key YOURHAKEYHERE

To test a repo and branch outside of davidusb-geek/emhass:master: (Utilizing build args build_repo and
build_branch)
Linux:

repo=https://github.com/davidusb-geek/emhass.git
branch=master

docker build -t emhass/docker --build-arg build_version=addon-git --build-arg build_repo=
→˓$repo --build-arg build_branch=$branch .

docker run -it -p 5000:5000 --name emhass-container -e LAT="45.83" -e LON="6.86" -e ALT=
→˓"4807.8" -e TIME_ZONE="Europe/Paris" -v $(pwd)/options.json:/app/options.json emhass/
→˓docker --url YOURHAURLHERE --key YOURHAKEYHERE

Docker run add-on pip:

docker build -t emhass/docker --build-arg build_version=addon-pip .

docker run -it -p 5000:5000 --name emhass-container -e LAT="45.83" -e LON="6.86" -e ALT=
→˓"4807.8" -e TIME_ZONE="Europe/Paris" -v $(pwd)/options.json:/app/options.json emhass/
→˓docker --url YOURHAURLHERE --key YOURHAKEYHERE

To build with specific pip version, set with build arg: build_pip_version:

docker build -t emhass/docker --build-arg build_version=addon-pip --build-arg build_pip_
→˓version='==0.7.7' .

(continues on next page)
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(continued from previous page)

docker run -it -p 5000:5000 --name emhass-container -e LAT="45.83" -e LON="6.86" -e ALT=
→˓"4807.8" -e TIME_ZONE="Europe/Paris" -v $(pwd)/options.json:/app/options.json emhass/
→˓docker --url YOURHAURLHERE --key YOURHAKEYHERE

You can add or remove file volume mounts with the -v tag, this should override the file in the container (ex. options.json)

EMHASS older then 0.7.9

For older versions of EMHASS, you may wish to specify the config, data and options paths to avoid errors:

docker run ... -e OPTIONS_PATH='/app/options.json' -e CONFIG_PATH='/app/config_emhass.
→˓yaml' -e DATA_PATH='/app/data/' ...

For example pip:

docker build -t emhass/docker --build-arg build_version=addon-pip .

docker run -it -p 5000:5000 --name emhass-container -e LAT="45.83" -e LON="6.86" -e ALT=
→˓"4807.8" -e TIME_ZONE="Europe/Paris" -e CONFIG_PATH='/app/config_emhass.yaml' -e DATA_
→˓PATH='/app/data/' -e OPTIONS_PATH='/app/options.json' -v $(pwd)/options.json:/app/
→˓options.json emhass/docker --url YOURHAURLHERE --key YOURHAKEYHERE

Sync with local data folder

For those who wish to mount/sync the local data folder with the data folder from the docker container, volume mount
the data folder with -v .

docker run ... -v $(pwd)/data/:/app/data ...

Issue with TARGETARCH

If your docker build fails with an error related to TARGETARCH. It may be best to add your devices architecture manually:

Example with armhf architecture

docker build ... --build-arg TARGETARCH=armhf --build-arg os_version=raspbian ...

For armhf only, create a build-arg for os_version=raspbian

Delete built Docker image

We can delete the Docker image and container via:

docker rm -f emhass-container #force delete Docker container

docker rmi emhass/docker #delete Docker image
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Other Docker Options

Rapid Testing
As editing and testing EMHASS via docker may be repetitive (rebuilding image and deleting containers), you may
want to simplify the removal, build and run process.

For rapid Docker testing, try a command chain:
Linux:

docker build -t emhass/docker --build-arg build_version=addon-local . && docker run --rm␣
→˓-it -p 5000:5000 -v $(pwd)/secrets_emhass.yaml:/app/secrets_emhass.yaml --name emhass-
→˓container emhass/docker

The example command chain rebuilds Docker image, and runs new container with newly built image. --rm has been
added to the docker run to delete the container once ended to avoid manual deletion every time.
This use case may not require any volume mounts (unless you use secrets_emhass.yaml) as the Docker build process
will pull the latest versions of the configs as it builds.

Environment Variables
Running addon mode, you can also pass location, key and url secret parameters via environment variables.

docker build -t emhass/docker --build-arg build_version=addon-local .

docker run -it -p 5000:5000 --name emhass-container -e URL="YOURHAURLHERE" -e KEY=
→˓"YOURHAKEYHERE" -e LAT="45.83" -e LON="6.86" -e ALT="4807.8" -e TIME_ZONE="Europe/Paris
→˓" emhass/docker

This allows the user to set variables prior to build Linux:

export EMHASS_URL="YOURHAURLHERE"
export EMHASS_KEY="YOURHAKEYHERE"
export TIME_ZONE="Europe/Paris"
export LAT="45.83"
export LON="6.86"
export ALT="4807.8"

docker build -t emhass/docker --build-arg build_version=addon-local .

docker run -it -p 5000:5000 --name emhass-container -e EMHASS_KEY -e EMHASS_URL -e TIME_
→˓ZONE -e LAT -e LON -e ALT emhass/docker

9.2.4 Example Docker testing pipeline

If you are wishing to test your changes compatibility, check out this example as a template:

Linux:
Assuming docker and git installed

#setup environment variables for test
export repo=https://github.com/davidusb-geek/emhass.git
export branch=master
#Ex. HAURL=https://localhost:8123/
export HAURL=HOMEASSISTANTURLHERE
export HAKEY=HOMEASSISTANTKEYHERE

(continues on next page)
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(continued from previous page)

git clone $repo
cd emhass
git checkout $branch

#testing addon (build and run)
docker build -t emhass/docker --build-arg build_version=addon-local .
docker run --rm -it -p 5000:5000 --name emhass-container -v $(pwd)/options.json:/app/
→˓options.json -e LAT="45.83" -e LON="6.86" -e ALT="4807.8" -e TIME_ZONE="Europe/Paris"␣
→˓emhass/docker --url $HAURL --key $HAKEY

#run actions on a separate terminal
curl -i -H 'Content-Type:application/json' -X POST -d '{"pv_power_forecast":[0, 70, 141.
→˓22, 246.18, 513.5, 753.27, 1049.89, 1797.93, 1697.3, 3078.93], "prediction_horizon":10,
→˓ "soc_init":0.5,"soc_final":0.6}' http://localhost:5000/action/naive-mpc-optim
curl -i -H 'Content-Type:application/json' -X POST -d {} http://localhost:5000/action/
→˓perfect-optim
curl -i -H 'Content-Type:application/json' -X POST -d {} http://localhost:5000/action/
→˓dayahead-optim
curl -i -H 'Content-Type:application/json' -X POST -d {} http://localhost:5000/action/
→˓forecast-model-fit
curl -i -H 'Content-Type:application/json' -X POST -d {} http://localhost:5000/action/
→˓forecast-model-predict
curl -i -H 'Content-Type:application/json' -X POST -d {} http://localhost:5000/action/
→˓forecast-model-tune
curl -i -H 'Content-Type:application/json' -X POST -d {} http://localhost:5000/action/
→˓publish-data

#testing standalone (build and run)
docker build -t emhass/docker --build-arg build_version=standalone .
#make secrets_emhass
cat <<EOT > secrets_emhass.yaml
hass_url: $HAURL
long_lived_token: $HAKEY
time_zone: Europe/Paris
lat: 45.83
lon: 6.86
alt: 4807.8
EOT
docker run --rm -it -p 5000:5000 --name emhass-container -v $(pwd)/config_emhass.yaml:/
→˓app/config_emhass.yaml -v $(pwd)/secrets_emhass.yaml:/app/secrets_emhass.yaml emhass/
→˓docker

#run actions on a separate terminal
curl -i -H 'Content-Type:application/json' -X POST -d '{"pv_power_forecast":[0, 70, 141.
→˓22, 246.18, 513.5, 753.27, 1049.89, 1797.93, 1697.3, 3078.93], "prediction_horizon":10,
→˓ "soc_init":0.5,"soc_final":0.6}' http://localhost:5000/action/naive-mpc-optim
curl -i -H 'Content-Type:application/json' -X POST -d {} http://localhost:5000/action/
→˓perfect-optim
curl -i -H 'Content-Type:application/json' -X POST -d {} http://localhost:5000/action/
→˓dayahead-optim

(continues on next page)
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(continued from previous page)

curl -i -H 'Content-Type:application/json' -X POST -d {} http://localhost:5000/action/
→˓forecast-model-fit
curl -i -H 'Content-Type:application/json' -X POST -d {} http://localhost:5000/action/
→˓forecast-model-predict
curl -i -H 'Content-Type:application/json' -X POST -d {} http://localhost:5000/action/
→˓forecast-model-tune
curl -i -H 'Content-Type:application/json' -X POST -d {} http://localhost:5000/action/
→˓publish-data

User may wish to re-test with tweaked parameters such as lp_solver and weather_forecast_method, in
config_emhass.yaml (standalone) or options.json (addon), to broaden the testing scope. see EMHASS &
EMHASS-Add-on differences for more information on how these config_emhass & options files differ

Note: may need to set --build-arg TARGETARCH=YOUR-ARCH in docker build

9.3 Step 3 - Pull request

Once developed, commit your code, and push to your fork. Then submit a pull request with your fork to the davidusb-
geek/emhass@master repository.
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